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1 Introduction

Disaggregate investment decisions are largely characterized by persistent and non-smooth behavior,

i.e. prolonged periods during which investment is actually zero are followed by prolonged periods in

which investment is positive (Caballero et al. 1995; Doms and Dunne 1998; Nilsen and Schiantarelli

2003).



ment, we separate investment decisions between activity (either positive or negative investment) and

inactivity (zero investment episodes).

Our analysis has a number of novel and distinct features. First, we make use of plant-level data

to analyze the effects of real oil prices on investment, whereas existing studies operate at a higher

level of aggregation.3 Second, we explicitly evaluate the existence and the direction of the effects

of real oil prices and real oil-price uncertainty on the dynamics of the investment decision process,

which – to the best of our knowledge – have not been explored before at such a disaggregate level.4

Third, we do so by using dynamic binary choice models of investment behavior that disentangle the

effect of real oil prices and their uncertainty from persistence due to unobserved heterogeneity or

state dependence.

Our findings show that increases in real oil price changes and real oil price uncertainty adversely

affect investment decisions of manufacturing plants. In some more detail, we find that rising real

oil prices significantly reduce the probability of investment action. This finding is robust across

different estimators employed. Additionally, we find that increases in real oil price uncertainty raise

significantly the probability of investment inaction. This finding is robust not only across estimators,

but also when employing different measures of uncertainty such as the one-sided ‘risk’ measures

suggested by Kilian and Manganelli (2007).

Moreover, in one set of robustness experiments we allow for the effect of the unexpected real oil

price change (a ‘shock’) and find that it reduces significantly the probability of investment. That is

we find that there are significantly negative level effects from unexpected changes in real oil prices,

without making the adverse effects of increases in real oil price uncertainty less important. This

piece of evidence can be considered as complementary to those in Edelstein and Kilian (2007), who

show, however, that there is no empirical support for theoretical models of the effects of uncertainty

on business fixed investment expenditures.5 Our results show that there are indeed strong uncertainty

3The use of a micro-level panel dataset is essential to avoid the problem of aggregation over production units, which

results when investment decisions are observed at a higher aggregation level that masks investment discontinuity. The

use of such a dataset makes it more likely that zeros (investment inaction) will be observed.
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effects on investment dynamics, but they are discernible at a more disaggregate level of analysis.

Finally, as a by-product of our analysis, we document the existence of strong state-dependence

in investment. We find that estimates of state dependence in investment are affected, as expected,

by the assumptions made regarding initial conditions and the treatment of unobserved heterogene-

ity. Despite the sensitivity to these assumptions, we find that the likelihood of investment action

is significantly positively correlated with investment action in the last period, across all estimators

examined.

The rest of the paper is organized as follows. Section 2 describes our econometric methodology

for modeling the investment process and for measuring real oil price uncertainty. Section 3 gives a

brief overview of the data employed, discusses our core empirical findings as well as various exten-

sions and robustness experiments, while section 4 concludes.

2 Empirical Methodology

In our work we make use of dynamic random-effects models to model the probability of investment

action, which include the previous state to allow for state dependence. Special attention is paid to

the treatment of unobserved heterogeneity and initial conditions. The former relates to whether the

observed persistence of investment is the outcome of ‘pure’ or ‘spurious’ state dependence.6 The

initial conditions are important, as in short panels, like ours, they have an impact on the entire path

of outcomes.

The empirical specification for modeling the investment decision takes the form of a dynamic

binary choice model

yit = 1 fx0it�+
yit�1 + ci + uit > 0g ; i = 1; ::; N ; t = 1; :::; Ti; (1)

where yit is an binary indicator variable for investment action by plant i = 1; :::; N in year t, the vec-

tor xit contains explanatory variables affecting the propensity to trigger investment, while ci denotes

a time-invariant component capturing plant-specific heterogeneity and uit is a well-behaved random

term.

The random-effects (RE) specifications we employ, require that the distributional properties of ci

and uit, as well as their relationship to the explanatory variables be specified, along with the initial

6Pure state dependence would imply that the probability of investment in year t depends on the outcome in year t�1,

after controlling for unobserved heterogeneity.
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conditions of the dynamic process. In what follows we assume that xit is strictly exogenous for uit

(conditional on ci), and more specifically that uitjX; c � NIID(0; �2
u).7 The standard random-effects

model assumes that cijxi � NIID(0; �2
c). An alternative following Mundlak (1978) and Chamberlain

(1984) is to allow for correlation between ci and the observed characteristics, assuming a relationship

of the form ci = �x0i� +�i, with �i � NIID(0; �2
�) being independent of xit and uit for all i and t and

�xi � T�1
i

PT
t=1 xit – the correlated random effects (CRE) model. In this instance, model (1) may be

written as

yit = 1 fx0it�+
yit�1 + �x0i� + �i + uit > 0g ; i = 1; ::; N ; t = 1; :::; Ti: (2)

The random-effects specification (2) implies that the correlation between the composite error

vit = �i + uit in any two periods will be the same, namely � = corr(vit; vis) = �2
�=(�

2
� + �2

u)

for t; s = 1; :::; Ti and t 6= s. Moreover, since y is binary, a convenient normalization is �2
u = 1.

If 
 = 0, model (2) involves only a single integral, by conditioning on the individual effect and

integrating it out, so parameters can be estimated by Maximum Likelihood (ML) using Gaussian–

Hermite quadrature (Butler and Moffitt 1982).

In order to estimate the model when 
 6= 0, it is necessary to make an assumption about the

relationship between the initial observation, yi0, and the individual-specific effect. One possibility is

to assume that yi0 is exogenous, i.e. a nonrandom starting position for each i. In this case, likelihood

can be decomposed into two independent factors and the joint probability for t = 1; :::; Ti, and can

be maximized without reference to that for t = 0. However, if the initial conditions are correlated

with �i, this method of estimation overstates state dependence (Chay and Hyslop 2000).

In our work we explore two alternative approaches that treat the initial observations as endoge-

nous following Heckman (1981) and Wooldridge (2005) respectively.8 Heckman (1981) suggests

specifying a linearized reduced-form equation for the initial value:

yi0 = 1 fz0i0� + ��i + ui0 > 0g (3)

where zi0 = (x0i0; �x
0
i)
0 and ui0 is assumed to be independent of �i, with the former satisfying the

same distributional assumptions as uit for t � 1. A test of � = 0 provides a test of exogeneity of the

7Here c = (c1; :::; cN )0; and X = (x01; :::;x
0
N )0 with xi = (xi1; :::;xiTi)

0.N



initial condition in this model.

Equations (2) and (3) together specify a complete model for a random sample (y0; y1; :::; yT ). One

can then marginalize the likelihood with respect to �i, obtaining the appropriate likelihood function

for the maximization. For instance, the contribution to the likelihood for plant i in the model is given

by

Li =

Z (
� [(z0i0� + ��i) (2yi0 � 1)]

TiY
t=1

� [(x0it�+
yit�1 + �x0i� + �i) (2yit � 1)]

)
d�(�i); (4)

where � is the standard normal cumulative distribution function. As �i is normally distributed, the

above integral can be evaluated using Gaussian–Hermite quadrature (Butler and Moffitt 1982).

A different approach to the initial conditions problem is proposed by Wooldridge (2005), who

suggests a Conditional Maximum Likelihood (CML) estimator, considering the distribution condi-

tional on the initial period value and exogenous covariates. More specifically, instead of specifying a

model for yi0 given xi and �i, a model is specified for �i given xi and yi0. In particular it is assumed

that

�i = �0 + �1yi0 + ai; (5)

as the Mundlak specification above already includes �xi. Substituting into (2) gives

yit = 1 fx0it�+
yit�1 + �0 + �1yi0 + �x0i� + ai + uit > 0g ; i = 1; ::; N ; t = 1; :::; Ti: (6)

In this model, the contribution to the likelihood function for individual i is given by

Li =

Z ( TiY
t=1

� [(x0it�+
yit�1 + �0 + �1yi0 + �x0i� + ai) (2yit � 1)]

)
d��(ai); (7)

where �� is the normal distribution function of the new unobservable individual-specific heterogene-

ity ai given in (5). So (6) is again a one factor probit model that can be easily estimated my ML using



where Tij is the number of common time series observations available for any pair of plants i and

j, and r̂ij is the correlation coefficient computed using the generalized residuals estimated under the

null hypothesis. They show that under the null hypothesis of cross-sectional independence, CD
d!

N(0; 1) for N; T ! 1 and that the CD statistic has exactly mean at zero for fixed values of N and

T , under a wide range of panel data models, including heterogeneous models, non-stationary and

dynamic panels.

3 Data and Empirical Findings

3.1 Data and Benchmark Measure of Real Oil-Price Uncertainty





Moreover, we find strong evidence of endogeneity of the initial conditions, which turn out to be

strong determinants of the subsequent investment decision process. In particular, looking at the re-

sults from both the Heckman and Wooldridge estimators, we reject the null hypothesis of exogeneity

of initial conditions – as � for the former and the marginal effect of yi;0 for the latter are strongly

significant.

Examining the issue of state dependence, across all four specifications the lagged investment ac-

tivity variable is highly significant, reflecting strong persistence. We find that the size of the relevant

estimated marginal effect decreases somewhat when we take into account heterogeneity and espe-

cially when initial conditions are treated as endogenous. In addition, there are a number of ways in

which the partial effect of yit�1 on Pr(yit = 1) may be assessed in models like the ones considered



instance, focusing on the last column of Table 1, we find that an increase of real oil prices by one

percentage point reduces the probability of investment action by 0.07 percent. Second, we also find

that an increase in real oil price uncertainty, reduces significantly the probability of investment action,

irrespectively of the estimator employed. For example, focusing again on the last column of Table

1, we find that an increase in our measure of real oil price uncertainty by 0.01 (roughly 11% relative

to its average value) reduces the probability of investment action by 0.46 percent.11 Moreover, even

when allowing for unobserved heterogeneity to be correlated with observable characteristics, as well

as explicitly modeling initial conditions, increases in real oil prices and real oil price uncertainty

retain their negative effect on the probability of investment activity. More importantly, though, we

see that the estimated magnitude of these effects is robust across all estimators employed.

Finally, we evaluate the extent to which the assumption of cross-sectional independence of the

error term is valid, by means of the CD-test. For all four estimators, we find that the null is strongly

rejected. In addition, the estimated average cross-sectional correlation of the generalized residuals

is above 0.34. However, there is no well-established technique that allows us to correct for this

deviation from the IID assumption.12 To this end, our results should be interpreted, keeping this

caveat in mind.

3.3 Extensions and Sensitivity Analysis

In this subsection we examine various extensions, such as using different measures of real oil–price

uncertainty, assessing the existence of asymmetry of oil–related effects, and expanding the set of

controls to include plant-specific uncertainty, the business–cycle and industry–wide uncertainty.13

3.3.1 Alternative Measures of Real Oil Price Uncertainty

Thus far, we have employed a measure of real oil–price uncertainty that is derived from a GARCH

model of conditional volatility, which despite being based on out-of-sample forecasts over a one–year

horizon, might not fully capture the ‘risk’ a decision maker is facing. On the one hand, this measure

converges quickly to the unconditional volatility of real oil prices (Kilian and Vigfusson 2011), and

11To understand better the magnitude of these effects, note that an increase of sales by 1% of value added increases

the probability of investment action by 0.15%!
12We have already included time-effects as the least possible remedy for the existence of cross-sectional dependence.
13We briefly discuss results when using alternative measures of uncertainty/risk. The rest of our estimation results are

available in an online supplement.
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on the other hand, in the context of investment decisions, the risk of real oil price increases rather

than a simple increase in variance of real oil prices, is probably more relevant.

In deriving such one–sided ‘risk’ measures we have two options. The first is to follow Kilian and

Manganelli (2007) and define the ‘risk’ of excessive real oil price increase h periods from date � ,

above a specific threshold value, ��, as

EIR�� (��) =

Z +1

��

(��+h � ��)� dF (��+h) ; (9)

where F (�) is the probability distribution function of future real oil–price change outcomes (��+h),

estimated by the empirical distribution of real oil–price changes forecasts. Note that this class of

risk measures is defined in terms of percentage increases in real oil prices, which squares well with

standard financial planning models and practice (Ross et al. 2005). In such models, one usually

employs forecasts of the growth rates of all the relevant variables (such as sales, cost etc.) as inputs,

so risk measures like (9) seem more appropriate. The second, which is more conventional in the

economics literature, is to define the risk measures in terms of the real oil price (the relative price of

oil) as this would show up in many standard profit maximization problems. In this instance, we may

define the ‘upside risk’ that real oil prices h periods from date � , R�+h, will be above a threshold

value, �R, as

UR�� ( �R) =

Z +1

�R

�
R�+h� �R

��
dF
�
(R�+h) ; (10)

where F �(�) is the predictive distribution of real oil prices. As both these classes of risk measures are

useful in different contexts, we report results for both.

Before proceeding note that for � = 1 both (9) and (10) reduce to tail conditional expectations,

multiplied by the corresponding tail probabilities: EIR1� (��) = E (��+h���j��+h> ��) Pr (��+h> ��)

and UR1�

�
�R
�

= E
�
R�+h� �R

��R�+h> �R
�

Pr
�
R�+h> �R

�
; while for � = 2 these reduce to the (one-

sided) variance about the target again multiplied by the corresponding tail probability: EIR2� (��) =

E [(��+h���)2j��+h> ��] Pr (��+h> ��) and UR2�

�
�R
�

= E[(R�+h� �R)
2jR�+h> �R] Pr

�
R�+h> �R

�
.

The excessive increase risk measures (EIR) can be computed as in Kilian and Manganelli (2007),

and the upside risk measures (UR) can be calculated as discussed in Alquist et al. (2011), for differ-

ent values of � . In calculating such risk measures we have chosen �� to be 20% and �R to be 50 euros

(in constant 2005 prices) – our results not being sensitive to this choice – and focus at a four-years

ahead horizon. Albeit limited in nature, as many business fixed investment projects tend to have

10



lifetimes well beyond four years, this choice is intended to capture – to the extent that is possible –

that the relevant measure of risk should reflect the life-time of the investment project.

Table 2 summarizes the estimated marginal effects from employing the dynamic CRE estimators

of Heckman and Wooldridge and these one-sided risk measures, leaving the rest of the controls the

same. When examining real oil prices, we see that their estimated marginal effects are closely in-

line with those reported in Table 1 and significant. One exception is when we employ the Heckman

estimator and the UR measures of one-sided risk: In this case increases in real oil prices do not

influence insignificantly the probability of investment.14

[Insert Table 2 About Here.]

On the other hand, when we employ the EIR1 or the EIR2 measures, we find that any increase

in these translates in a significantly lower probability of investment action. Instead, when we employ

the UR measures, we again find that the probability of investment is lowered, but not in a significant
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creases when output rises above trend-output (the economy is in a boom), whereas it is less likely

that investment will take place when output is cyclically below trend (in a recession).

Finally, we evaluate whether the inclusion of industry-wide uncertainty in our controls, makes a

significant difference to our results. To measure industry uncertainty we follow Bloom et al. (2007)

and use the unconditional standard deviation of daily stock returns from the Industrials Price Index,

in year t



smaller plants, whereas no such evidence is found for real oil prices.

Finally, we document the existence of strong state-dependence in investment. We find that esti-

mates of state dependence in investment are affected by the assumption made regarding initial con-

ditions and the treatment of unobserved heterogeneity. Despite the sensitivity to these assumptions,

we find that likelihood of triggering investment is significantly positively correlated with investment

action in the last period, suggesting that its presence significantly affects the time trajectory of in-

vestment decisions.
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Table 1: Dynamic Models of Investment Activity

Dynamic RE Dynamic CRE Dynamic CRE

(Exogenous Initial (Exogenous Initial (Endogenous Initial

Conditions) Conditions) Conditions)

Covariate Heckman Wooldridge

yi;t�1 0.330*** 0.314*** 0.194*** 0.275***

[35.611] [33.796] [23.509] [30.902]

�̂oiltjt�1 -0.749*** -0.500*** -0.454*** -0.460***-0.460***



Table 1 Continued

Dynamic RE Dynamic CRE Dynamic CRE

(Exogenous Initial (Exogenous Initial (Endogenous Initial

Conditions) Conditions) Conditions)

Heckman Wooldridge

Diagnostics

� 0.282*** 0.256*** 0.318*** 0.259***

[20.589] [19.102] [19.892] [20.505]

logL -15812.196 -15478.078 -12717.619 -15275.266

N.Obs 42794 42794 47997 42794

CD-Test 612.352*** 766.229*** 797.184*** 762.235***

�r 0.342 0.358 0.363 0.359

Predicted probabilities

Pred. Prob. ~p0 0.412 0.386 0.419 0.366

Pred. Prob. ~p1 0.925 0.934 0.947 0.938

APE = ~p1 � ~p0 0.512 0.547 0.528 0.572

PPR = ~p1=~p0 2.242 2.416 2.259 2.562

Notes for Table 1: The oil price uncertainty metric, �̂oiltjt�1, is constructed as a twelve month average of the

predicted one-year-ahead monthly real oil price volatility. �oilt denotes the percentage change of the real oil

price in year t relative to year t � 1. The set of controls also includes industry and time dummies. In the

first two specifications the initial condition is taken to be exogenous, while yi;0 denotes the initial condition,

as in Wooldridge (2005). In the Heckman (1981) estimator, the initial period is modeled as a function of

SLi;�1; CFi;�1; EMPi;�1 and all time-averaged plant-specific characteristics. logL in the Heckman (1981)

estimator is for the joint model for all periods (1994-2005), whereas in all other models it corresponds to pe-

riod 1995-2005, which also explains the difference in the number of observations. CD-test denotes the test of

cross-sectional independence proposed by Hsiao et al. (2012), and �r indicates the average pair-wise correlation

coefficients of the generalized residuals. ~p0 denotes the average predicted probability for investment action in

year t, given inaction in the previ [- tear pp i ienotes the pverage predicted prebability for investment action in

cear ~
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