
Department of  
Economics and Finance  





1 Introduction

The dynamics of �rm failure correlation play a central role in contemporary risk management

for corporations, regulators, academics and investors. They o�er important information about

credit ratings of �rms provided by rating agencies and the interdependencies of economic cycles

and corporate default risk (Du�e et al., 2007; Du�e, 2011). Furthermore, they can be used as

an input in determining minimum capital requirements by banks and bank regulators (Du�e,

2011). In this regard, sovereign entities such as governments or their representatives across

the world may design favourable macroeconomic policies for various sectors.

In this paper, we explore the dynamics of corporate failure dependence and its variations

across various sectors on the London stock exchange (LSE) over the period 1985-2012. To

this end, we use a multivariate frailty model that accounts for unobserved factors.

Literature broadly groups credit risk models into structural and reduced forms, given the

role that information plays in modelling default risk (see e.g. Jarrow and Turnbull, 1992;

Jarrow and Turnbull, 1995; Du�e and Singleton, 1999; Du�e and Lando, 2001; Jarrow

and Protter; 2004; Giesecke, 2006; among others). However, reduced form approaches have

received more attention than the structural ones (Jarrow, 2001, Jarrow and Protter, 2004;

Duan et al. 2012; Dionne and Laajimi, 2012; Figlewski et al., 2012; Yeh et al., 2015), since

these models are primarily based on the information available to the market.1 In this paper,



Lando and Nielsen (2010), Chava et al. (2011), Koopman et al. (2011, 2012), Orth (2013), and

Qi et al. (2014). Shumway (2001) proposes a simple hazard model that allows for time-varying

covariates to forecast �rm’s bankruptcy. The forecast performances of the hazard model are

compared to those of a single-period classi�cation model or static model, and the empirical

results show that the hazard model outperforms the alternative models. Das et al. (2007) aim

to investigate whether default events in an intensity-based setting can be modeled as \doubly

stochastic", i.e. as dependent solely on exogenous factors, and Lando and Nielsen (2010) use

a di�erent speci�cation of the intensity that allows to reject the Poisson property of the time

change aggregate default process considered by Das et al. (2007). Since models that assume

independence in failure rates are likely to produce inaccurate estimates, as highlighted in Das

et al. (2007), frailty factors are then considered to control for unobserved e�ects. For instance,

Du�e et al. (2009) develop a single economy-wide dynamic frailty model and showed that

models with frailty factor(s) are likely to outperform those without these factors. In related

studies, Koopman et al. (2011, 2012) show the importance of incorporating frailty factors

in hazard rate models and how these factors may improve the predictive performance of the

models. In addition, Chava et al. (2011) argue that incorporating sector unobserved e�ects is

likely to improve the predictive ability of these hazard rate models. Hence, they proposed a

multivariate frailty model that controls for two di�erent regimes where �rms in a sector share

the same frailty factor. Orth (2013) takes a di�erent approach to dealing with default predic-

tions. The framework proposed does not need a covariate forecasting model and involves the

estimation of just one parameter vector. The model is applied to North American public �rms

data. Following Du�e et al. (2009), Qi et al. (2014) show that accounting for unobserved

risk factors in a model enhances the in-sample predictive accuracy at �rm, rating group and

aggregate levels, and argue that the unobserved risk factors play a more signi�cant role in

predicting default risk as compared to the observed risk factors.

This paper makes some contributions to the literature on corporate �nance. First, we

propose an additive lognormal frailty model with two regime changes (distressed and normal
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regime). While the literature predominately features gamma distribution (see e.g. Chava et

al., 2011; Wienke, 2011), we use the lognormal distribution as it o�ers much more 
exibility in

modelling the dependence structures within a multivariate context (see e.g. Hougaard, 2000;

Duchateau and Janssen, 2008; Wienke, 2011). The lognormal distribution is positively skewed

and the dependence measure (or association) is directly proportional to the skewness of the

distribution: the higher the value of association, the greater the skewness which makes the

right tail longer (Lee and Wang, 2003). As the data on corporate failure is highly skewed, a



exchange are more inclined to move faster towards failure. Lastly, the additive lognormal

frailty model tends to better estimate and predict within-sector frailties and dependencies

than the multiplicative gamma frailty when moving away from normal market conditions.

This seems to favour the use of the additive lognormal frailty model when estimating and

predicting correlations and failure rates among �rms during distressed market conditions in

the UK.

The rest of the paper is organized as follows. Section 2 presents methodology and data.

Section 3 discusses the empirical �ndings and Section 4 concludes.

2 Methodology and data

In this section, we �rst present our additive lognormal frailty model and multiplicative gamma

frailty of Chava et al. (2011), and then we describe the data.

2.1 Additive lognormal frailty model

Our additive lognormal frailty model is based on the approach of Clayton (1978). Let T 2

[0;1) be the time to event or time until a �rm either fails or leaves the sample as a result of

non-failure event (e.g. mergers and acquisitions). Our data set contains s clusters (sectors)

and in each cluster there are ni members (�rms) (see Duchateau and Janssen, 2008). In our

sample, the sum of �rms across all the sectors is the total number of �rms, n =
Ps

i=1 ni.

Given a time horizon [0; T �], staggered �rm entry is allowed and some �rms may leave the

sample period due to non-failure events. In addition, some �rms may experience failure event

or survive beyond the end of the sample period, T �, and a �rm is considered censored if it

leaves the sample period through non-failure reasons or survives beyond T �. The information

consists of the set (Tij; �ij; Ena4.479le as a result of

i=1Tn



time, and �i =
Pni

j=1 �ij is the total number of failures in the ith sector. The vector Xij(t)

is the set of time-varying covariates for the jth �rm in the ith sector in the counting process

style of input. Finally, ~ui is the unobserved information or the frailty term for ith sector.2

We use the classical shared frailty modelling approach of Clayton (1978) to derive our

additive lognormal frailty model. The classical shared frailty model is based on the Cox PH

semi-parametric framework and is de�ned as follows:

hij(t) = h0(t)~uiexp(Xij(t)�); (1)

where hij(t) is the conditional hazard rate for the jth �rm in the ith sector (conditional on

the frailty factor, ~ui), h0(t) is an arbitrary baseline hazard and � is a p-dimensional vector

of coe�cients of the covariates, Xij(t). We rewrite the frailty factor ~ui in terms of a random

e�ect or log-frailty as: ~wi = log ~ui or ~ui = exp( ~wi). Then, equation (1) becomes:

hij(t) = h0(t) exp(log(~ui))exp(Xij(t)�)

= h0(t)exp(Xij(t)� + ~wi): (2)

Equation (2) represents the classical lognormal shared frailty model. It contains two

terms: the �xed e�ects term, which involves the covariates, and the random term, ~wi, with an

expected value, E( ~W ) = 0 and a �nite variance, V ar( ~W ) = 
. We follow Chava et al. (2011)

to construct the log-frailty term as a combination of sector-speci�c log-frailty term, wi, and a

time-varying sector distress indicator, Zi(t), which takes value 1 for distressed sectors at time

t and 0 otherwise. As such, we have:

~wi(t) = log (2) represen]TJ/F17 11.9552 Tf 3.381 1.794 Td [(�.l.9552 [(i)]TJ/F17 11.9552t051)--05n.368 -1.794 Td expt



Equation (3) can be re-written as:

~wi(t) = �Zi(t) + wi; (4)

where � = log(�) is the additive factor in the regime-switch lognormal frailty context that

accounts for the extra variations in hazard rates induced by distressed market periods. Using

equation (4), we have that the hazard function in equation (2) is:

hij(t) = h0(t)exp(Xij(t)� + �Zi(t) + wi); (5)

and de�ne the additive lognormal frailty model (regime-switch lognormal frailty model) as:

hij(t) =

8>><>>:
h0(t)exp(Xij(t)� + �Zi(t) + wi) if sector i is distressed;

h0(t)exp(Xij(t)� + wi) otherwise:

(6)

The classical shared lognormal frailty model is a special case of our additive lognormal

frailty model when � = 0. The shared lognormal frailty model does not incorporate regime

changes in the impact of the lognormal frailties. Although the multiplicative gamma frailty

model may show high predictive power (see Chava et al., 2011), we argue that our additive

lognormal frailty model o�ers much more 
exibility than the gamma frailty model due to

the properties of the lognormal distribution within the multivariate context (Hougaard, 2000;

Duchateau and Janssen, 2008; Wienke, 2011). This 
exibility stems from the dependence

between the right tail of the distribution and the association parameter (Lee and Wang,

2003), and its power transformation property (Hougaard, 2000).

To estimate the parameters in equation (6), we use the penalised partial likelihood (PPL)

approach of McGilchrist and Aisbett (1991):

lp(�; �; 
jw) = lpart(�; �jw)� lpen(
jw); (7)

7



where

lpart(�; �jw) =

sX
i=1

niX
j=1

�ij

0@Xij(t)� + �Zi(t) + wi � log

0@ X
j2R(Tij)

exp(Xij(t)� + �Zi(t) + wj)

1A1A ;

(8)

which is the conditional likelihood given the log-frailties and

lpen(
jw) =
1

2


sX
i=1

w2
i ; (9)

represents the penalised term (the distribution of the log-frailties). This term penalises the

likelihood by subtracting large values of the penalty term from the full data log likelihood

if the real values of the log frailties are far from their mean (see Duchateau and Janssen,

2008). The term R(Tij) in equation (8) is the risk set (the set of surviving �rms or �rms still

at the risk of an event). The PPL is independent of the baseline hazard function, making it

possible to estimate the parameters in the likelihood without knowing the shape of the baseline

hazard rate. This characteristic of PPL makes our estimates robust irrespective of the shape

of the baseline hazard rate (see e.g. Cox, 1975; Duchateau and Janssen, 2008; Allison, 2010),

although estimates can be to some extent not fully e�cient, but this ine�ciency is normally



For any value of the log-frailty variance, 
, we employ the marginal log-likelihood in

Ripatti and Palmgren (2000) (see also Therneau and Grambsch, 2000; Therneau et al., 2003;

SAS/STAT 13.2) to derive the extended PPL of equation (11):

lm(��; 
) = �1

2
log(
I) + log(





Table 1: Sector names
Sector ID Name

1 UK-DS Oil and Gas Producers
2 UK-DS Oil Equipment and Services
3 UK-DS Alternative Energy
4 UK-DS Chemicals
5 UK-DS Basic Resource
6 UK-DS Construction and Materials
7 UK-DS Aerospace and Defence
8 UK-DS General Industrials
9 UK-DS Electronic and Electrical Equipment
10 UK-DS Industrial Engineering
11 UK-DS Industrial Transportation
12 UK-DS Support Services
13 UK-DS Automobiles and Parts
14 UK-DS Food and Beverage
15 UK-DS Personal and Household Goods



tural model of Merton, 1974).4 We adopt the approach of Bharath and Shumway (2008) to

construct this measure because (i) it is much easier to implement in practice since this does

not require solving complex equations iteratively in the classical Merton’s (1974) method; (ii)

it has slightly better in and out sample predictive power as compared to Merton’s Distance-

to-Default metric (Bharath and Shumway, 2008). In addition, we use the ratio of net income

to total assets, and total liabilities to total assets.

In order to test the robustness of our model to di�erent levels of sector distress (degrees

of departure from normal market conditions), we construct �ve sector level distress indicators

following Gilson et al. (1990), Opler and Titman (1994) and Acharya et al. (2007).5

Let r(t) be the median equity return of a sector during a given year t and "(n) be a

real number that only takes on the values -0.10, -0.15, -0.20, -0.25, and -0.30 for the integer

n = 1; :::; 5 respectively. We de�ne a sector level distress indicator as:

Z(n) =

8>><>>:
1 if r(t) < "(n)

0 otherwise:

(17)

For example, the �rst sector level distress indicator is Z(1), which takes 1 if the median

equity return of a sector during a given year in the sample period of our analysis is less than

-10 percent and 0 otherwise. Explicitly, this sector level distress is said to occur if the returns

of over half of the number of stocks within a given sector is less than -10 percent in a particular

year. The third sector level distress indicator, Z(3), corresponds to Chava et al. (2011) sector

level distress indicator. This indicator takes 1 if the median equity return of a sector during

a given year is less than -20 percent and 0 otherwise. By our construction, the sector distress

indicator 3 represents a more severe market conditions than sector distress indicator 1. All

these indicators are used to control regime changes in the sample period of our analysis.

As regards the de�nition of failure, we follow the convention of legal de�nition of failure

4Age is de�ned as the period between the time a �rm is listed and the time of an event.
5Chava et al. (2011) also follows the same authors when constructing one sector distress indicator. Here,

we take a step further and construct four extra sector distress indicators.
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Table 2: Descriptive statistics
Variable Mean Std. Dev. Min 25th P. Median 75th P. Max

Distance to Default Prob. 0.692 0.263 0.000 0.666 0.778 0.852 1.000
Stock Return(%) 8.760 27.998 -91.520 -6.818 7.406 20.986 220.557
LSE Return (%) 10.922 16.940 -22.167 2.590 13.170 24.080 57.840

3-month T-bill rate (%) 5.746 3.253 0.434 4.480 5.150 6.850 14.332
ln(Age) 1.971 0.898 0.000 1.386 2.079 2.708 3.296

ln(Equity) 16.716 1.965 11.920 15.509 16.706 17.936 21.964
Inverse of Volatility 3.704 1.847 0.975 2.406 3.359 4.600 10.331
Excess Return (%) 1.355 32.428 -93.948 -15.188 0.000 14.005 169.800
Stock Volatility (%) 0.340 0.181 0.077 0.216 0.296 0.413 1.025





Table 3: Additive lognormal frailty model. Dependent variable: time to event
Lognormal Shared Frailty Additive Lognormal Frailty

M1 M2 M3 M4
Frailty Variance 0:306

(0:150)
0:246
(0:131)

0:307
(0:126)

0:288
(0:147)

Additive Factor 2:472
(0:251)

2:422
(0:250)

Distance to Default Prob. 1:771
(0:473)

1:971
(0:469)

1:703
(0:467)

1:885
(0:464)

Stock Return �0:017
0:003

�0:016
(0:003)

�0:015
(0:003

�0:015
(0:003)

Market Return(LSE) 0:785
(0:065)

0:786
(0:065)

0:762
(0:062)

0:763
(0:062)

3-Month Treasury Bill Rate �1:419
(0:194)

�1:373
(0:194)

�0:938
(0:174)

�0:897
(0:174)

ln(Age) �0:392
(0:103)

�0:360
(0:105)

Marginal Log Likelihood -632.873 -626.172 -589.175 -583.697
Likelihood ratio Test 522.766 531.960 610.471 619.239

Wald Test 325.698 330.184 376.084 382.385
Notes: The parameter estimation is done using covariates from Du�e et al. (2007). The Exact approximation

is used to control for ties in the survival times of �rms in our sample when deriving the penalised partial likeli-

hood. The standard errors are in parenthesis. The parameters are adjusted for the within-sector dependencies

or correlations. The Likelihood ratio and Wald Tests are signi�cant.

addition, �rms closer to default tends to exhibit higher probabilities of distance to default.

As for the 3 month Treasury bill rate, results show that this covariate tend to decrease the

hazard rate All in all, our results related to overall market are in line with those in Du�e et

al. (2007, 2009) who argued that the unexpected positive sign of a market index should \not

be an evidence that a good year in the stock market may in itself be bad news for default

risk." This could be attributed to the fact that, in the subsequent years of a boom, a �rm’s

distance to default probability is likely to overstate its �nancial prospects.

3.2 Parameter estimation using covariates of Shumway (2001) and

Bharath and Shumway (2008)

The second set of covariates is taken from Shumway (2001). They are the logarithm of total

assets (ln(total assets)), excess return, total liabilities to total assets, stock volatility and net

income to total assets. In Table 4, model 5 (M5) is the classical frailty model, whilst model

7 (M7) is the additive lognormal frailty model. The estimates of these models show that the
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on hazard rates. Again, the estimates of all the models in these speci�cations are adjusted

for the within-sector dependencies. The two speci�cations, though having slightly di�erent

covariates, produce similar results. After accounting for unobserved sector e�ects, the results

show (i) �rms with low income levels and high liabilities are more likely to fail than �rms with

high income levels and low liabilities; (ii) �rms characterised with high past returns, bigger

�rms and less volatile �rms have high survival rates than small �rms, volatile �rms with low

past returns. All these �ndings may be informative for the stakeholders (i.e. stock investors,

regulators, etc.) on LSE for their decision-making process in the short-run period.

3.3 Impact of sector distress on within-sector dependence

In this section, we explore the robustness of the additive lognormal frailty and multiplicative





models increases as the market conditions becomes more severe. However, our model seems to

be robust to di�erent market conditions, as it appropriately accounts for the extra randomness

induced by the distressed periods, and it performs better than the multiplicative gamma frailty

model (MGFM) in measuring the within-sector dependence (see frailty variances in Table 5)

during distressed market periods.

For robustness of analysis, we also estimate the within-sector failure rates (frailties) and

random e�ects (log-frailties)(see section 2.1) using our model, ALFM3, and model of Chava

et al. (2011), MGFM3. The results are presented in Figure 1 (see panels A and B).

It emerges that �rms in sectors with frailties larger than one tend to fail faster than �rms

with frailties smaller than one. For instance, �rms in Real Estate sector (see sector ID. 26 in

Table 1) with a frailty of 1.918 for ALFM3 (1.676 for MGFM3) are likely to fail faster than

�rms in �xed line Telecommunications sector (see Sector ID. 21 in Table 1) with a frailty of

0.9068 for ALFM3 (0.890 for MGFM3). Therefore, these �gures con�rm the results in Table

5, and they seem to suggest that, under distressed market periods, the additive lognormal

frailty model is likely to outperform the multiplicative gamma frailty model.

3.4 Out-of-sample extraction of failure rates

The accuracy of the estimates of failure rates plays a central role in stakeholders’ decisions.

In this section we use an out-of-sample parameter extraction approach to extract sector-level

failure rates (frailties are not observable). We present the results of one step-ahead extracts by

using our model and the multiplicative gamma frailty model. More, speci�cally we consider

one-year horizon, as often required by most regulatory requirements (see for instance the Bank

for International Settlements), and compute the additional deviations from the expected future

values. We then evaluate the accuracy of the extraction by using the root mean square of the

deviations: the higher the value of this metric, the higher the accuracy.

We proceed as follows. We use a naive recursive scheme for one-step ahead extraction

over the following years: 2010, 2011 and 2012. We do this in line with Shumway (2001). For
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Figure 1: Estimated failure rates and log-failure rates for models ALFM3 and MGFM3.
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instance, to extract the within-sector frailty (or failure rate) and the corresponding dependence

for 2010, we de�ne a sample from 1985 to 2010 and estimate the parameters using the period

1985 - 2009 by holding out 2010. In this way, we obtain the frailties at the beginning of

2010. We do the same for 2011 and 2012. This naive extraction scheme is repeated for all

the sectors under consideration. Finally, for each sector i, we construct the root mean square

deviation (RMSDi) as follows: RMSDi =
qP3

t=1(ŷi;t � E(~ui;t))2=3, where ŷi;t denotes the

extracted value, E(~ui;t) is the expected value of frailty for sector i = 1; :::; 29 and t = 1; 2; 3,

where t = 1 indicates the year 2010, t = 2 is the year 2011, and t = 3 is the year 2012.8 We

use the expected value of the frailty as the actual value since it is not observable at the end

of 2010. For instance, ŷ5;2, the extracted failure rate for the UK Basic Resource (ID.5) for the

year 2011. Table 6 presents the additive lognormal and multiplicative gamma frailty model

extraction based on the within-sector dependencies (see Table 7). Results for the RMSD are

illustrated in Table 8.

The results in Table 6 show that there are di�erences in the extracted values over time

and across sectors for both models. This extraction allows us to distinguish between �rms in

sector which are likely to fail faster or slower in the event of �rm failure clustering. Firms in

sectors with estimates larger than 1 (fast-failure regime) are likely to fail faster, whilst those

with estimates smaller than 1 (slow-failure regime) are likely to fail slower. For instance, �rms

in the UK Oil and Gas Production Sector (ID. 1) are likely to fail faster, while those in the

UK Health Equipment and Services sector (ID. 16) are likely to fail slower. Furthermore,

these results reveal some interesting trends in �rm failure. First, in a fast-failure regime, the

multiplicative gamma frailty model tends to underestimate these rates across sectors, while the

additive lognormal frailty tends to predict these rates more accurately. For instance, for the

UK Real Estate Sector (ID. 26), the extractions of the failure rates for the multiplicative model

are 1.469, 1.631 and 1.676, whereas those for the additive lognormal frailty model are 1.753,

1.853 and 1.918, respectively. In addition, these dynamics also hold for a mixed regime, where

8The impact of frailties on hazard rates during distressed periods tends to be more pronounced and hence
we construct a metric for capturing the additional variations in hazard rates across the years for each sector.
Therefore, high values of our metric are desirable.
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Table 6: Within-sector failure rate extractions, ŷi;t.
Additive Lognormal Frailty Model Multiplicative Gamma Frailty Model
Sec. ID 2010 2011 2012 Sec. ID 2010 2011 2012



Table 7: Out-of-sample within-sector dependence extracts
Additive Lognormal Frailty Model Multiplicative Gamma Frailty Model
Sec. ID 2010 2011 2012 Sec. ID 2010 2011 2012

1 0.234 0.202 0.196 1 0.123 0.152 0.148
2 0.339 0.334 0.358 2 0.206 0.334 0.369
3 0.392 0.401 0.428 3 0.206 0.332 0.367
4 0.307 0.313 0.335 4 0.177 0.265 0.288
5 0.218 0.193 0.205 5 0.166 0.205 0.224
6 0.268 0.285 0.307 6 0.178 0.268 0.291
7 0.312 0.336 0.366 7 0.207 0.334 0.369
8 0.315 0.297 0.308 8 0.207 0.305 0.331
9 0.240 0.259 0.278 9 0.159 0.222 0.238
10 0.197 0.181 0.191 10 0.130 0.137 0.146
11 0.266 0.266 0.287 11 0.155 0.188 0.199
12 0.132 0.112 0.118 12 0.115 0.108 0.114
13 0.361 0.371 0.393 13 0.176 0.217 0.233
14 0.251 0.235 0.250 14 0.157 0.193 0.203
15 0.144 0.140 0.149 15 0.089 0.101 0.107
16 0.297 0.228 0.228 16 0.207 0.195 0.202
17 0.186 0.144 0.150 17 0.109 0.106 0.112
18 0.131 0.118 0.121 18 0.086 0.089 0.091
19 0.176 0.155 0.151 19 0.133 0.182 0.177
20 0.088 0.082 0.082 20 0.060 0.065 0.065
21 0.286 0.261 0.274 21 0.155 0.223 0.240
22 0.291 0.271 0.285 22 0.146 0.191 0.205
23 0.366 0.396 0.432 23 0.206 0.332 0.367
24 0.329 0.340 0.361 24 0.206 0.334 0.370
25 0.246 0.201 0.210 25 0.156 0.177 0.188
26 0.103 0.087 0.089 26 0.066 0.066 0.068
27 0.138 0.099 0.102 27 0.140 0.115 0.117
28 0.150 0.127 0.132 28 0.102 0.112 0.118
29 0.187 0.140 0.136 29 0.108 0.110 0.106

Notes: The estimates represent the dependence or correlation between the lifetimes of �rms in the sectors.
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When comparing the RMSD of the two models for each sector, the additive lognormal

frailty model has slightly higher values than those by the multiplicative gamma frailty model

(see Table 8). These �ndings seem to con�rm the relevance of our distribution assumption on

the frailties, as the additive lognormal frailty model �ts the data better than the multiplicative

gamma frailty model during distressed market periods.

4 Conclusions

We use a multivariate lognormal regime-switch frailty model to estimate and predict within-

sector failure rates and the corresponding dependencies of listed �rms on London Stock Ex-

change (LSE) over period 1985-2012. The model is particularly suitable for dealing with

distressed market periods. In relation to a set of observable predictive factors of failure rates,

we �nd signi�cant evidence of unobserved sector-speci�c source of default rates amongst the

listed �rms. Neglecting these unobserved sector-speci�c factors may likely lead to underesti-

mation of the hazard rates.

We also account for the adjustment factor in hazard rates and investigate the dynamics of

this relative to a set of crucial �rm failure predictive factors when moving away from normal

market conditions. The scalar adjustment increases when moving from less to more severe

distressed market conditions, whilst the desirable impact of distance to default probability

(volatility adjusted leverage) with a substantial predictive power for hazard rates averagely

deteriorates. However, all the other covariates also experience slight changes in their mag-

nitudes as expected. Interestingly, we also found that the distance to default probability of

�rms is likely to overstate the �nancial prospects of these �rms after a boom on LSE.

We also compare our model with the multiplicative gamma frailty model of Chava et

al. (2011). It results that the former outperforms the latter both in-sample and out-sample

estimates, as it o�ers much 
exibility in accounting for extra variations in hazard rates induced

by departure from market normality and unobserved sector factors. Therefore, we argue that

the additive lognormal frailty is likely to produce better estimates and predictions of hazard
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rates, within-sector failure rates and dependencies.

Our �ndings have some important implications for stakeholders on LSE. Speci�cally, in

the event of failure clustering on LSE, the within-sector failure rates of our model could be

used by investors and other stakeholders to discriminate amongst �rms or sectors, which

are likely to fail faster or slower. In this respect, investors may e�ectively rebalance their

portfolios and obtain good estimates of their portfolio risks. On the other hand, regulators

may rank �rms into various risk pro�les in order to suitably design new or enhance existing

regulatory requirements to make �rms more risk sensitive. Finally, market participants are

highly recommended not to be conservative on �rms’ distance to default probability after a

market boom on LSE. Failing to account for this may likely lead to underestimation of default

rates, within-sector failure rates and dependencies of �rms.
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