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Abstract 

 
This paper investigates persistence in financial time series at three different frequencies 

(daily, weekly and monthly). The analysis is carried out for various financial markets 

(stock markets, FOREX, commodity markets) over the period from 2000 to 2016 using 

two different long memory approaches (R/S analysis and fractional integration) for 

robustness purposes. The results indicate that persistence is higher at lower frequencies, 

for both returns and their volatility. This is true of the stock markets (both developed and 

emerging) and partially of the FOREX and commodity markets examined. Such evidence 

against the random walk behavior implies predictability and is inconsistent with the 

Efficient Market Hypothesis (EMH), since abnormal profits can be made using specific 

option trading strategies (butterfly, straddle, strangle, iron condor, etc.). 
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1. Introduction 

The Efficient Market Hypothesis (EMH), according to which asset prices should follow a 

random walk and therefore not exhibit long memory (see Fama, 1970) has been for 

decades the dominant paradigm in financial economics. However, the available empirical 

evidence is quite mixed. Mandelbrot (1972), Greene and Fielitz (1977), Booth et al. 

(1982), Helms et al. (1984), Caporale et al. (2014), Mynhardt et al. (2014) among others 

all provided evidence of long-memory behaviour in financial markets. By contrast, Lo 

(1991), Jacobsen (1995), Berg and Lyhagen (1998), Crato and Ray (2000), Batten et al. 

(2005) and Serletis and Rosenberg (2007) did not find long-memory properties in 

financial series. A possible reason for such different findings is that the degree of 

persistence might change over time as argued by Corazza and Malliaris (2002), Glenn 

(2007) and others. 

The present study aims to examine this possible explanation by estimating 

persistence in financial time series at three different frequencies (daily, weekly and 

monthly. The analysis is carried out for various financial markets (stock markets, FOREX, 

commodity markets), for both returns and their volatility, over the period from 2000 to 

2016 using two different long memory approaches (R/S analysis with the Hurst exponent 

method and fractional integration) for robustness purposes. The hypothesis to be tested is 

that persistence is higher at lower frequencies.  

The layout of the paper is the following. Section 2 describes the data and outlines 

the empirical methodology. Section 3 presents the empirical results. Section 4 provides 

some concluding remarks.  

 

2. Data and Methodology 

The R/S method was originally applied by Hurst (1951) in hydrological research and 

improved by Mandelbrot (1972), Peters (1991, 1994) and others analysing the fractal 
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5.  Each range RIa is normalised by dividing by the corresponding SIa. 

Therefore, the re-normalised scale during each sub-period Iais RIa/SIa. In the step 2 above, 

we obtained adjacent sub-periods of length n. Thus, the average R/S for length n is defined 

as: 
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6.  The length n is increased to the next higher level, (M - 1)/n, and must be an 

integer number. In this case, we use n-indexes that include the initial and ending points of 

the time series, and Steps 1 - 6 are repeated until n = (M - 1)/2. 

7.  Now we can use least square to estimate the equation log (R / S) = log (c) + 

Hlog (n). The angle of the regression line is an estimate of the Hurst exponent H. This can 

be defined over the interval [0, 1], and is calculated within the boundaries specified below 

(for more detailed information see Appendix C): 

- �� �� +� �� ���� ± the data are fractal, the EMH is not confirmed, the 

distribution has fat tails, the series are anti-
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There are different approaches to calculate the Hurst exponent (see Appendix A). 

In most cases de-trended fluctuation analysis (DFA) produces the best results (Weron, 

2002; Grech and Mazur, 2004), but for financial series the R/S analysis seems to be the 

most appropriate (see Appendix B), and therefore is used here. The interpretation of the 

Hurst exponent is as follows: the higher it 
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Phillips (2002). In this paper, however, we will employ instead another semiparametric 

method, which is HVVHQWLDOO\�D�ORFDO�µ:KLWWOH�HVWLPDWRU¶�defined in the frequency domain 

using a band of high frequencies 
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Appendix F focuses on the semi-parametric approach, first for the return series 

(Table F.1) and then for their volatilities (Table F.2). We find again higher persistence at 

lower frequencies for the stock markets considered, but not the FOREX and the 

commodity ones.  
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in all cases when persistence is higher at lower frequencies there exist profit opportunities 

(through appropriately designed trading strategies) that are inconsistent with market 

efficiency. 
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Appendix A 

 

Table A.1: Methodology for the Hurst exponent calculations: general review 

 

Author(s) Methodology* Results 

Taqquetal., 

(1995)  

R/S, DFA R/S overestimates the Hurst exponent, DFA underestimates 

it. 

Weron, T7 90.24 41.7uR/S 
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Appendix C 
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Appendix D 

 

R/S analysis 

Table D.1: Results of the R/S analysis for the different financial markets, 2004-2016 
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Appendix F 

 

Semi-parametric method 

Table F.1: Estimates of d for the return series 

i)    Daily
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Table F.2: Estimates of d for the volatility series 

i)    Daily data 

 56 58 60 62 64 66 68 70 72 

 

FOREX 

Euro 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

DJPY 0.448 0.462 0.483 0.493 0.500 0.500 0.500 0.500 0.500 

 

Stock 

Market 

D & J 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
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