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1. Introduction 

Modelling volatility is crucial for risk management. Following the global financial crisis of 

2008, the Basel III international regulatory framework for banks has imposed more stringent 

capital requirements, and enhanced risk management systems have been developed. Since 

then the international financial system has had to face a new challenge, namely the 

introduction of decentralised cryptocurrencies, the first being Bitcoin, which was created in 

2009 (Nakamoto, 2009). Unlike traditional currencies, cryptocurrencies are based on 

cryptographic proof, which provides many advantages over traditional payment methods 

(such as credit cards) including high liquidity, lower transaction costs, and anonymity (these 

features are discussed by Fantazzini et al., 2016). 

Interest in Bitcoin and other cryptocurrencies has risen considerably in recent years. 

Their market capitalisation increased from approximately 18 billion US dollars at the 

beginning of 2017 to nearly 600 billion at the end of that year1, and high returns have 

attracted new investors. In addition, two big exchanges, i.e. the Chicago Mercantile Exchange 

(CME) and the Chicago Board Options Exchange (CBOE), started to trade futures on 

Bitcoin.2 As a result of these developments, central banks have been facing the question of 

whether or not cryptocurrencies should be regulated, given the numerous technical and legal 

issues involved.  

Further, cryptocurrencies are highly volatile and consequently it is important to 

estimate appropriate risk metrics, which can be used for calculating capital requirements, 

margins, hedging and pricing derivatives etc. It is well known that standard GARCH models 

can produce biased results if the series display structural breaks (Bauwens et al. (2010, 

2014)); these are likely to occur in the case of cryptocurrencies. Specifically, Chu et al. (2017) 

argue that structural changes not accounted for (such as policy changes) might explain why 

the Integrated GARCH (1, 1) (IGARCH) model is found to be a good fit for numerous 

cryptocurrencies (Caporal tion costs, and anonymity

, two big exchanges, 

https://coinmarketcap.com/
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is then chosen by backtesting VaR and ES as well as using a Model Confidence Set (MCS) 

procedure for their loss functions. 

The paper is organised as follows. Section 2 briefly discusses the relevant literature; 

Section 3 provides a description of the data; Section 4 outlines the methodology; Section 5 

presents the empirical results; finally, Section 6 offers some concluding remarks. 

2. Literature Review 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are the most 

commonly used in the literature for modelling volatility and estimating Value-at-Risk (VaR) 

and Expected Shortfall





https://coinmarketcap.com/
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Figure 2 Histograms of log returns 

4. Methodology 

4.1 GARCH models 
Let ώ  ᶰ Ὑ be the percentage log-returns of the financial asset (exchange rate) of interest at 

time t. Following Ardia et al. (2018a), we adopt the following general Markov-Switching 

GARCH specification: 

 ώ ȿ Ὓ Ὧȟ Ὅ ͯὊ πȟ Ὤ ȟ ȟ — ȟ (1) 

where Ὂ πȟ Ὤ ȟ ȟ —  is a continuous distribution with zero mean, time

�Þ
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EGARCH (Nelson (1991)) 
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4.3 Expected Shortfall Backtesting 
VaR is an elicitable 
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A Wald statistic is then carried out using the parameters ‌ȟ ‍ : 

 Ὕ ‌ȟ ‍ πȟ ρ ɫ ‌ȟ ‍ πȟ ρ ȟ (31) 

where ɫ  is an estimator for the (asymptotic) covariance matrix of the M-estimator of 

the parameters ‌ȟ ‍ . Hence, the test statistics follows asymptotically a …  distribution. 

The test described above has been named the bivariate ESR test by Bayer and 
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In order to eliminate inferior elements of the set ὓ  the following EPA hypotheses are 

tested 

 
Ὄ ȟ ȡ ‘ π ᶪ Ὥȟ Ὦ ᶰ ὓȟ 

Ὄ ȟ ȡ ‘ π Ὢέὶ ίέάὩ Ὥȟ Ὦ ᶰ ὓ 
(38) 

or 

 
Ὄ ȟ ȡ ‘ Ȣ π ᶪ Ὥȟ Ὦ ᶰ ὓȟ 

Ὄ ȟ ȡ ‘ Ȣ π Ὢέὶ ίέάὩ Ὥȟ Ὦ ᶰ ὓ 
(39) 

where ὓ Ṓ ὓ .  

From these statistics the following t-statistics can be constructed 
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Standard GARCH models prevail in the first and second regimes. Interestingly, the 

normal distribution prevails in the first regime, but whilst the Student’s t distribution is 

appropriate for 70% of the models in the second regim
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second standard GARCH and GJRGRACH represent 90% of the chosen models. Similarly, 

the Student’s t and normal distribution prevail in the second regime being selected in 88% of 

the cases. No models with a skewed GED distribution are included in the SSM, and none with 

a skewed distribution 
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skewed Student’s t distributions are chosen in all cases in the second. Markov-switching and 

mixture models represent respectively 60% and 40% of those included in the SSM. 

Specifications with leverage effects at least in one of the regimes represent 80% of the total in 

the SSM. 

Table 8 
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namely Bitcoin, Ethereum, Ripple and Litecoin. Two-regime GARCH models are found to 

produce better VaR and ES predictions than single-regime models.  

Surprisingly, both the QL and joint loss function results suggest a standard GARCH 

model for Bitcoin. As for Ethereum, the MCS procedure selects a regime mixture model with 

a GJR GARCH specification and Student’s t 
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