

Department of Economics and Finance

	Working Paper No. 2314
eries	Guglielmo Maria Caporale, Amir Imeri and Luis A. Gil-Alana
Paper S	Persistence in the Cryptocurrency Market:
/orking	The Impact of the Covid-19 Pandemic and of the
Finance W	Russia-Ukraine War
Economics and Finance Working Paper Series	July 2023
	http://www.brunel.ac.uk/economics

Persistence in the Cryptocurrency Market:

The Impact of the Covid-19 Pandemic and of the Russia-Ukraine War

Guglielmo Maria Caporale¹, Amir Imeri², Luis A. Gil-Alana³

¹Brunel University London, London, UK; Email address: guglielmomaria.caporale@brunel.ac.uk; Orcid: https://orcid.org/0000-0002-0144-4135

²University for Business and Technology, Pristina, Kosovo Email address: amir.imeri@ubtuni.net; Orcid: https://orcid.org/0000-0003-3546-9362

³University of Navarra, Pamplona, Spain and Universidad Francisco de Vitoria, Madrid, Spain;

1. Introduction

The cryptocurrency market has developed significantly since the launch of Bitcoin in January 2009, thereby providing new investment opportunities to agents. One important issue is the extent to which it can be characterised as an efficient market, which requires prices to follow a random walk and thus to be unpredictable. Whilst numerous studies have analysed persistence of other asset prices (see, e.g., Mills, 1993; Barkoulas & Baum, 1996; Jacobsen, 1996; Caporale and Gil-Alana, 2004; Caporale et al., 2016), the evidence concerning the cryptocurrency market is more limited. The most extensive study on this topic is due to Caporale et al. (2018), who found time-varying persistence in Bitcoin, Litecoin, Wave, and Run over the period 2013-2017, whilst Caporale and Plastun (2019) detected an anomaly in the case of Bitcoin, which appears to have higher returns on Mondays than on the other days of the week.

The aim of the present paper is to investigate the possible impact on the cryptocurrency market of two most recent exogenous shocks that have affected the world economy, namely the Covid-19 pandemic and the Russia-Ukraine war. Although a few existing studies have already examined this issue (see, e.g., Sabrine et al., 2022; Khalfaoui et al., 2023; Lahmiri, 2023; Theiri et al., 2023), ours considers a wider set of cryptocurrencies and uses a more general and flexible modelling approach. More specifically, our analysis is carried out for the five cryptocurrencies with the highest degree of market capitalisation (Bitcoin, Ethereum, Tether, BNB and USD Coin) using fractional integration methods that are informative about the long-memory, mean reversion and persistence properties of the series of interest. Estimates of the fractional differencing parameter measuring the degree of persistence are obtained first for the period ending in December 2019; then the sample is extended to December 2021 to examine the possible impact of the Covid-

cryptocurrencies and found considerable heterogeneity across these markets. Finally, Arouxet et al. (2022) reported that the Covid-19 pandemic had only a slight impact on the long-memory properties of both the returns and volatility of seven cryptocurrencies.

3. Empirical Analysis

The present study uses daily data on the five cryptocurrencies with the highest

References

Abbritti M., Gil-Alana L.A., Lovcha Y. & Moreno A. (2016). Term structure persistence. Journal of Financial Econometrics, 14(2), 331–352. https://doi.org/10.1093/jjfinec/nbv003

Abbritti, M., Carcel, H., Gil-Alana, L.A. & Moreno, A. (2023). Term premium in a fractionally cointegrated yield curve. Journal of Banking and Finance, Volume 149, 106777. https://doi.org/10.1016/j.jbankfin.2023.106777

Al-Yahyaee, K.H., Mensi, W., Ko, H., Yoon, S. & Kang, S. (2020). Why cryptocurrency markets are inefficient: The impact of liquidity and volatility. The North American Journal of Economics and Finance 52. https://doi.org/10.1016/j.najef.2020.101168

Arouxet, M.B., Bariviera, A.F., Pastor, V.E. & Vampa, V. (2022). Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent. Physica A: Statistical Mechanics and its Applications 596. https://doi.org/10.1016/j.physa.2022.127170

Aslan, A. & Sensoyb (2020). Intraday efficiency-frequency nexus in the cryptocurrency markets. Finance Research Letters 35. https://doi.org/10.1016/j.frl.2019.09.013

Barkoulas, J.T. & Baum,

Cuestas, J. C. and Gil-Alana, L. A. (2016). A nonlinear approach with long range dependence based on Chebyshev polynomials. Studies in Nonlinear Dynamics and Econometrics, 23, 445-468.

Giudici, G., Milne, A. & Vinogradov, D. (2020). Cryptocurrencies: market analysis and perspectives. Journal of Industrial and Business Economics 47, 1–18. https://doi.org/10.1007/s40812-019-00138-6 Papadimitriou, T., Gogas, P. & Gkatzoglou, F. (2020). The evolution of the cryptocurrencies market: A complex networks approach. Journal of Computational and Applied Mathematics 376. https://doi.org/10.1016/j.cam.2020.112831

Sabrine, A., Arouri, M. & Adel, B. (2022). War and Cryptocurrency markets: An Empirical Investigation. Available at SSRN: https://ssrn.com/abstract=4116377 or http://dx.doi.org/10.2139/ssrn.4116377

Theiri, S., Nekhili, R. & Sultan, J. (2023). Cryptocurrency liquidity during the Russia–Ukraine war: the case of Bitcoin and Ethereum. Journal of Risk Finance, 24(1), 59-71. https://doi.org/10.1108/JRF-05-2022-0103

Table 1: Capitalisation in the cryptocurrency market (25.04.2023)

Name

Series	No terms	An intercept	An intercept and a time trend		
Bitcoin	0.97 (0.93, 1.02)	1.04 (1.00, 1.08)	1.04 (1.00, 1.08)		
BNB	1.07 (0.99, 1.18)	1.14 (1.06, 1.23)	1.14 (1.06, 1.22)		
Ethereum	1.04 (0.99, 1.09)	1.02 (0.98, 1.07)	1.02 (0.98, 1.07)		
Tether	-0.09 (-0.13, -0.06)	-0.09 (-0.13, -0.06)	-0.11 (-0.15, -0.08)		
USD Coin	0.57 (0.48, 0.67)	0.52 (0.43, 0.63)	0.50 (0.41, 0.63)		
Estimated coefficients in the selected models:					
Series	d	Intercept	Intercept an		

Table 2: Estimates of d for	the sample ending in December 2019
-----------------------------	------------------------------------

Series	No terms	An intercept	An intercept and a time trend		
Bitcoin	0.98 (0.95, 1.01)	1.04 (1.01, 1.09)	1.04 (1.01, 1.09)		
BNB	1.10 (1.03, 1.17)	1.15 (1.09, 1.22)	1.15 (1.09, 1.21)		
Ethereum	1.04 (1.00, 1.09)	1.03 (0.99, 1.08)	1.03 (0.99, 1.08)		
Tether	-0.08 (-0.11, -0.05)	-0.08 (-0.11, -0.05)	-0.09 (-0.12, -0.05)		
USD Coin	0.58 (0.53, 0.66)	0.56 (0.48, 0.64)	0.55 (0.49, 0.64)		
Estimated coefficients in the selected models:					
Series	d	Intercept	Intercept and time trend		
Bitcoin	1.04 (1.01, 1.09)	4.8991 (115.99)	0.0018 (1.76)		
BNB	1.15 (1.09, 1.22)	-2.2152 (-31.51)			
Ethereum	1.03 (0.99, 1.08)	10.260 (14.98)	0.0030 (1.68)		
Tether	-0.09 (-0.12, -0.05)	-0.00116 (-3.52)	0.0000011 (5.01)		
USD Coin	0.56 (0.48, 0.64)	0.00597 (2.26)			

Table 3: Estimates of d with data ending at December 2021

Note: values in parenthesis in the upper panel are the 95% confidence intervals for the estimates of the differencing parameter. In bold, the estimates from the selected models. In the lower panel, in parenthesis in column 3 and 4, the $cor13(sf1\ 0\ 0\ hi)-10(m)7(ates\ o)-742\ 0\ 0\ himates\ o$ matesu6(r)-3(o)-17(m)1924 578.14 0.48 22.92 re, the

Series	Pre-Covid-19	Covid-19	Russia-Ukraine war
Bitcoin	1.04 (1.00, 1.08)	1.04 (1.01, 1.09)	1.03 (0.99, 1.07) ⁻
BNB	1.14 (1.06, 1.23)	1.15 (1.09, 1.22)+	1.15 (1.10, 1.21)
Ethereum	1.02 (0.98, 1.07)	1.03 (0.99, 1.08)+	1.03 (0.99, 1.07)
Tether	-0.09 (-0.13, -0.06)	-0.08 (-0.11, -0.05)+	-0.08 (-0.11, -0.06)

 Table 5: Summary of the Results