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Abstract 

 

This paper analyses US nominal house prices at an annual frequency over the period from 

1927 to 2022 by means of a very general time series model. This includes both a (linear 

and non-linear) deterministic and a stochastic component, with the latter allowing for 

fractional orders of integration at both the long-run and the cyclical frequencies. The 

results are heterogeneous depending on the model specification and on whether or not the 

series have been logged. Specifically, a linear model appears to be more appropriate for 

the logged data whilst a non-linear one appears to be a better fit for the original ones. 

Further, the order of integration at the zero or long-run frequency is much higher than at 

the cyclical one. The former is in fact around 1 in al
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1.  Introduction 

 

House prices are a key variable whose fluctuations can have a significant impact on both 

the real and the financial sectors of the economy, as documented, among others, by Case 

et al. (2005), Davis and Heathcote (2005), Leamer (2007), Attanasio et al. (2011), Carroll 

et al. (2011), Funke and Paetz (2013), Chen et al. (2018). Their crucial importance became 

even more apparent as a result of the global financial crisis (GFC) of 2007-08. This 

originated from the US housing market, where the issuance of sub-prime mortgages had 

become widespread and led to a housing bubble and serious financial turmoil when it 

eventually burst (see, e.g.,  Shiller, 2007). Consequently, numerous empirical studies have 

been carried out to understand the behaviour of house prices. Broadly speaking, two main 

approaches have been followed in the literature for this purpose, the first focusing on their 

drivers, the second on their stochastic properties. Among studies belonging to the first 

category, Capozza and Helsely (1989, 1990) 
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Granger and Joyeux, 1980 and Hosking, 1981) is much more general, since it is not based 

on the dichotomy between I(0) stationary and I(1) non-stationary series, which is very 

restrictive. Instead the differencing parameter d is allowed to take any real value, 

including fractional ones. This approach encompasses a wide range of stochastic 

behaviours, including the unit root case, and provides evidence on whether or not the 

series of interest is mean-reverting (and thus on whether exogenous shocks have 

permanent or transitory effects) and on its degree of persistence. It has been used in some 
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a general form as in Bloomfield (1973) is allowed in the error term. This framework is 

applied to analyse US nominal house prices at an annual frequency over the period from 

1927 to 2022. 

The layout of the paper is the following. Section 2 outlines the modelling 

framework. Section 3 describes the data and presents the empirical results. Section 4 

offers some concluding remarks. 

 

2. The Econometric Model 

The model estimated in this study is more general than those used in the previous 

literature on house prices. Specifically, it includes both a deterministic and a stochastic 

component, with the latter allowing for fractional degrees of integration at both the long-

run and cyclical frequencies.  

The deterministic part of the model is specified as follows:  

ሻݐሺݕ          �� ൌ ����݂ሺݖሺݐሻǢ �߰ሻ �൅ �ݐ����������ሻǡݐሺݔ��� ൌ �ͳǡ ʹǡ ǥ�ǡ�  (1) 

where y(t) stands for house prices (either the original or the logged series), and f is a 

function that can be linear, for instance including an intercept and a linear time trend, 

(Bhargava, 1986, Schmidt and Phillips, 1992) as in the following equation: 

݂ሺݖ
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Hamming (1973) and Smyth (1998) provided a detailed description of these polynomials, 

whilst Bierens (1997) and Tomasevic and Stanivuk (2009) argued that it is possible to 

approximate highly non-linear trends with rather low degree polynomials. If m = 0 the 

model contains an intercept, and if m ≥ 1, it becomes non-linear - the higher m is, the less 

linear the approximated deterministic component becomes.  

Concerning the stochastic terms, x(t) in (1) is assumed to be a process characterised 

by two orders of integration, one for the long-run or zero frequency, which captures 

possible stochastic trends, and the other for the cyclical structure of the data. More 

precisely, x(t) is defined as follows:  

ሺͳ െ ሻௗభܮ �ሺͳ െ ʹ᩸ ��� ሻݎሺݓ ܮ ൅ ଶሻௗమܮ ሻݐሺݔ�
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where εt is a white noise process, its spectral density function is given by: 

݂ሺߣǢ ߬ሻ �� ൌ ����
ଶߪ

ߨʹ
���ቤ

ͳ� ൅�σ ௦݁௜ఒ௦௤ߠ
௦ୀଵ

ͳ� െ�σ ߮௥݁௜ఒ௥௣
௥ୀଵ

ቤ

ଶ

Ǥ 

According to Bloomfield (1973), the log of the above expression can be well 

approximated by Eq. (5) when p and q are small values, and thus it does not require the 

estimation of as many parameters as in the case of ARMA models. In addition, 

Bloomfield’s (1973) model has the advantage of being stationary for all its values (see 

Gil-Alana, 2004). 

Let us now consider further Eq. (4). Note that the first polynomial can be expanded 

for any real value d1 as 

�෍ ൬
݀ଵ

݆
൰

ஶ

௝ୀ଴

ሺെͳሻ௝ܮ௝ �� ൌ ���ͳ െ ݀ଵܮ ൅�
݀ଵሺ݀ଵ െ ͳሻ

ʹ
ଶܮ െ  ڮ

In this context, d1 indicates the degree of persistence of the series in relation to the long- 

run or zero frequency. Thus, if d2 = 0 in Eq. (4),  x(t) can be expressed as 

�ሻݐሺݔ � ൌ � ݀ଵݔሺݐ െ ͳሻ� �െ �
݀ଵሺ݀ଵ െ ͳሻ

ʹ
ݐሺݔ� െ ʹሻ�� �൅ �ǥ�൅ݑ��ሺݐሻ� 

and the higher the value of d1 is, the higher is the degree of dependence between the 

observations. Moreover, if d1 is positive, x(t) displays the property of long memory since 

in that case its spectral density function becomes  

݂ሺߣǢ ��߬ሻ ൌ �
ଶߪ�

ߨʹ
ฬ

ͳ

ͳ െ ݁௜ఒ
ฬ
ௗభ

ǡ� 
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iii) long memory, though covariance stationary processes, if 0 < d1 < 0.5, 

iv) 1/f noise, if d1 = 0.5, 

v) nonstationary mean reverting processes, if 0.5 ≤ d1 < 1, 

vi) unit roots, if d1 = 1, 

vii) explosive processes, if d1 > 1. 

 Next we focus on the cyclical structure of x(t) which is captured by the second 

polynomial in (4). Gray et al. (1989) showed that, by denoting μ = w(r), this polynomial 

can be expressed in terms of the orthogonal Gegenbauer terms  ܥ௜ǡௗమ
ሺߤሻ, such that for all 

real d2 ≠ 0, 

ሺͳ െ ܮߤʹ ൅ ଶሻିௗమܮ � ൌ � ෍ ௜ǡௗమܥ

ஶ

௜ୀ଴

ሺߤሻܮ௜ǡ� 

where ܥ௜ǡௗమ
ሺߤሻ can be defined recursively as: 

଴ǡௗమܥ�
൫ߤ௥

௝
൯ ൌ �ͳǡ�   ܥ�ଵǡௗమ

൫ߤ௥
௝
൯ ൌ  �ǡ݀�ߤ�ʹ�

and 

௜ǡௗమܥ�
�ൌ ߤ�ʹ� ቀ

ௗమିଵ

௝
൅ ͳቁ ௜ିଵǡௗమܥ

ሺߤሻ െ ቀʹ
ௗమିଵ

௜
൅ ͳቁ ௜ିଶௗమܥ

ሺߤሻ�. 

This type of process was introduced by Andel (1986), and authors such as Gray et al. 

(1989, 1994), Giraitis and Leipus (1995), Chung (1996a, 1996b), Gil-Alana (2001), Dalla 

and Hidalgo (2005), Caporale and Gil-Alana (2013) and others subsequently used it to 

analyse time series data. 

 

3. Data 

http://www.econ.yale.edu/~shiller/data.htm
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 Figure 1 displays time series plots of the original series, its logged transformation, 

and the first differences of both. It can be seen that the series in levels, whether logged or 
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specification is chosen on the basis of the statistical significance of the estimated 

coefficients. We report the results for both the original and log-transformed data in levels. 

TABLES 1 AND 2 ABOUT HERE 

 Table 2 displays the estimated parameters from the selected model for each of the 

two series. The time trend is statistically significant in both cases with a positive  

coefficient, and the estimates of d are 0.85 for the original data and 0.97 for the log-

tansformed ones. However, the confidence intervals imply that the unit root null 

hypothesis (i.e., d = 1) cannot be rejected for either series. 

 Next, we consider a non-linear specification with Chebyshev polynomials in time. 

Specifically, the estimated model is now the following: 

ሻݐሺݕ      ��� ൌ ��� σ ௜ߠ ௜்ܲ
௠
௜ୀ଴ ሺݐሻ ��൅ �����ሻǡݐሺݔ�
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where d



11 
 

while 
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Figure 2: Correlograms of the series 

House prices House 
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Figure 3: Periodograms of the series 

House prices House prices (in logs) 

 

 

 

 

 

 

 

 

(1 – L) House prices (1 – L) House prices (in logs) 

  
Note:  The displayed values are the discrete frequencies λj = 2πj/T, for j = 1, … 20 
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Table 1: Estimates of d at the long-run frequency with a linear trend model 

Series No deterministic 

terms 

With an intercept With an intercept 

and a linear trend 

Original data 

 

0.83   (0.62,  1.66) 0.78   (0.65,  1.47) 0.85   (0.57,  1.45) 

Logged data 

 

0.78   (0.55,  1.28) 0.97   (0.80




