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1.  Introduction 

Sea ice and snow cover extent both play a key role in the global climate system.  The 

former is the area of ice that covers the Arctic Ocean and the Southern Ocean respectively 

at any given time. Its extent is crucial since sea ice reflects sunlight back into space as 

well as regulating ocean and air temperature, circulating ocean water, and preserving 

animal habitats. Snow instead is of essential importance for the water cycle. In particular, 

winter precipitation and spring and summer runoff both affect the water supply, energy 

production, and local climate. In addition, snow is the cause of geological hazards such 

as floods and avalanches. For these reasons, its cover extent is also considered a key 

climatological variable. 

In recent decades there has been a growing concern that global warming is leading 

to an irreversible and sharp decline in both sea ice and snow cover extent, with severe 

damaging consequences for the planet Earth (see, e.g., Frei et al., 2012; Groisman et al., 

1994a,b; Li et al., 2018). Existing studies invariable conclude that indeed those two series 

exhibit a negative and significant time trend (see, e.g., Déry and Brown, 2007; Young, 

2023; Peng and Meier, 2018; Mudryk et al 2020a,b, 2021). This evidence is based on 

standard modelling approaches which require the disturbances to be well behaved, 

namely not to be autocorrelated. However, it is well known that climatological series tend 

to exhibit long memory - see, e.g., the recent studies by Yuan et al. (2022), Zhu et al. 

(2023), and Gil-Alana and Carmona (2023). For this reason, the present paper adopts a 

modelling framework which allows the series of interest to be characterised by this 

property. More specifically, it analyses monthly data on sea ice cover extent from January 

1979 to April 2024 and on snow cover extent from January 1967 to April 2024 for various 

regions of the world using a fractional integration framework based on the assumption 

that the errors are I(d) with d different from zero. This leads to the conclusion that the 
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series being investigated are not in fact trended, in contrast to the evidence of a 

progressive decline in both sea ice and snow cover extent which is obtained using 

standard methods. The implication is that the findings reported by previous studies are a 

consequence of their adopting an inappropriate modelling approach not recognising that 

the series under examination ot T
Q
q
0ndestandard methods
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The average maximum winter global sea ice extent which has been observed from 1966 

to the present is approximately 19×106 km2 (NOAA, 2024), while the average maximum 

winter snow extent in the Northern Hemisphere1 is approximately 47×106 km2 (Estilow 

et al., 2015; NOAA, 2024. Several studies have analysed the relationship between snow 

and sea ice cover extent on one side and Earth’s albedo and surface energy on the other, 

and shown that when the former declines the Earth’s albedo decreases and the Earth’s 

surface warms as a result of more energy being absorbed (Kukla and Kukla, 1974; 

Groisman et al., 1994b).  

A decline in the snow and the sea ice cover extent has been observed in many 

parts of the world (Brown et al., 2010; Najafi et al., 2016). In particular, it appears that 

the depletion of the Arctic sea ice cover, especially in 
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contributing to warmer temperatures (Brown et al., 2010). However, there has been 

considerable intra-seasonal variability (Wang et al., 2015; Connolly et al., 2019; Mudryk 

et al., 2020b; Khani et al., 2022). Interestingly, anomalously cold periods and large 

snowfalls in recent winters have been experienced in North America, Asia, and Europe 
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                            𝑦(𝑡)  =   𝛼 +   
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statistics (see, e.g., Hamilton (1994). However, in the presence of weak autocorrelation, 

OLS or Generalized Least Squares (GLS) estimates are only valid if x(t) exhibits short 

memory. In other words, the error term x(t) must be integrated of order 0 (x(t)  ≈ I(0)), a 

condition that is not satisfied by many climatological series. In fact, many earth-related 

series appear to exhibit long memory, namely the infinite sum of their autocovariances is 

infinite, i.e.  

      ∑ ∣ 𝛾(𝑢) ∣𝑢=∞
𝑢=−∞   =    ∞.       (6) 

or, alternatively, in the frequency domain, their 
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The results can be summarised as follows. A statistically significant time trend is found 

when the errors in the regression model are incorrectly assumed to exhibit short memory. 

However, this evidence vanishes when the errors are allowed instead to follow an I(d) 

process with d different from zero and positive, and thus to be characterised by long 
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Figure 1: Time series plots 

 
 

 

 

 
 

 

 

 

  
 

  

- 4- 3- 2- 16 13  .3 8 .2 4 .8 0 .8 6 14  .4 8 .5 4 .

-2,5- 2- 1 , 5- 1- 0 , 500 , 511 , 522 , 516 11 2 11 8 12 4 1 7 7 6 14 2 14 8 15 4 1S e a  i c e  e x t e n t  ( N o r t h e r n  H e m . )





 

21 
 

Table 4: Estimated coefficients in Equation (12) using the full sample 

Series d   (95% band) Intercept Time trend Seasonal 

Sea Ice Extent (1979m1 – 2024m12) 

Ice (Global) 0.85  (0.74,  0.97) 1.7146 (3.99)* -0.0052  (-0.67) 0.127  


