Non-Hermitian ensembles and Painleve critical asymptotics
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Normal matrix model

We are interested In the normal random matrix model defined by
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with z; 2 C and potential
Vio(z) = jzj*
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Figure 1. The limiting eigenvalue distribution is supported on the interior of the orange curves. Here s = 11 and
t=t. 0:1(left),t=t;(centre) and t = t. + 0:1 (right). At the special value t = t;, the support becomes disconnected.

In this poster our goal Is to invef)tigate the partition function Zy(t)
near the critical valuet =t, = 1=" s.

Reduction to the Ginibre ensemble

The first observation Is that we can use symmetry to write Zy(t) as
an average over the Ginibre ensemble:
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Criticality now corresponds to the spectral variable x colliding with
the boundary of the circular law (i.e. jx} = 1). When jx] < 1
(sub-critical), the asymptotics were obtained in [2].

Painlevé and non-Hermitian matrix integrals

Our main result for finite N characterizes the partition function as a
solution of the -form of Painleve V.

Theorem 1. The ‘reduced’ partition functions Z,ﬂl )(x) can be written as

1. An average over the CUE:
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2. The -form of Painlevé V:
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where yy (1) (t) satisfies the equation
€% [ t’+2()°+(N ) T+4(7 D T+N)=0; (1)

with initial condition
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The first part above can be arrived at by a judicious inspection of for-
mulas In [2]. Then the second part is a consequence of the first due

to results of Forrester and Witte ’02.
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Large N asymptotic results

Asymptotic results for related orthogonal polynomials have been
studied in various works, but the critical case only very recently in
[1]. For the partition function, we obtain:

Theorem 2. If = 2k, where k 2 N, then for
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we have the following asymptotics:
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uniformly for u In compact subsets of R, where En:k IS a completely explicit
pre-factor. The function v satisfies the -form of the Painlevé IV equation:

(1+o0(1); N T 1;

V2 + 40V +K)  (sV! V) =0; (2)
subject to the boundary condition
v(s) = ks §+O(s 9} s 1:

We believe this result persists to non-integer k, indeed a naive rescal-
Ing of equation (1) reproduces exactly the Painleveé IV in (2). The
advantage of integer Kk Is the duality (Forrester and Rains ’08):
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making N ¥ 1 asymptotics easy to compute. For k not integer, we
use Riemann-Hilbert techniques.
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