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Normal matrix model

We are interested in the normal random matrix model defined by

dPN(z1; z2; : : : ; zN ; t) =
1

ZN(t)
j�(z)j2

NY
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e�NV
(s)
t (zj) dA(zj);

with zj 2 C and potential

V
(s)
t (z) = jzj2s � t(zs + zs); s 2 N:

The eigenvalues z1; : : : ; zN display an interesting behaviour:

Figure 1: The limiting eigenvalue distribution is supported on the interior of the orange curves. Here s = 11 and
t = tc � 0:1 (left), t = tc (centre) and t = tc + 0:1 (right). At the special value t = tc, the support becomes disconnected.

In this poster our goal is to investigate the partition function ZN(t)

near the critical value t = tc = 1=
p
s.

Reduction to the Ginibre ensemble

The first observation is that we can use symmetry to write ZN(t) as
an average over the Ginibre ensemble:
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where
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Criticality now corresponds to the spectral variable x colliding with
the boundary of the circular law (i.e. jxj = 1). When jxj < 1 � �

(sub-critical), the asymptotics were obtained in [2].

Painlevé and non-Hermitian matrix integrals

Our main result for finite N characterizes the partition function as a
solution of the �-form of Painlevé V.

Theorem 1. The ‘reduced’ partition functions Z (
)
N (x) can be written as

1. An average over the CUE:
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2. The �-form of Painlevé V:

Z (
)
N (x) = cN;
 exp

 Z Nx2

0

yN(t) + 
N
2

t
dt

!
where yN(t) � �(t) satisfies the equation
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The first part above can be arrived at by a judicious inspection of for-
mulas in [2]. Then the second part is a consequence of the first due
to results of Forrester and Witte ’02.

Large N asymptotic results

Asymptotic results for related orthogonal polynomials have been
studied in various works, but the critical case only very recently in
[1]. For the partition function, we obtain:

Theorem 2. If 
 = 2k, where k 2 N, then for

jxj2 = 1� up
N
; u 2 R

we have the following asymptotics:
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uniformly for u in compact subsets of R, where EN;k is a completely explicit
pre-factor. The function v satisfies the �-form of the Painlevé IV equation:

(v00)2 + 4(v0)2(v0 + k)� (sv0 � v)2 = 0; (2)

subject to the boundary condition

v(s) = �ks� k
s

+ O(s�3); s! �1:

We believe this result persists to non-integer k, indeed a naive rescal-
ing of equation (1) reproduces exactly the Painlevé IV in (2). The
advantage of integer k is the duality (Forrester and Rains ’08):
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making N ! 1 asymptotics easy to compute. For k not integer, we
use Riemann–Hilbert techniques.
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