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Real Wishart spiked models

• Real Wishart matrix S in WR (Σ,M):

1. X: N × M (M ≥ N) and columns of X are i.i.d. N-

variate normal variables with zero mean.

2. Σ: covariance matrix Σij = E(Xi1Xj1).

• Wishart matrix:

S =
1

M
XXT ,

• Think of each column of X as a sample from a N-variate

normal variables with zero mean. Then S is the sample

covariance matrix.



•



•



Previous results

• For complex and quartonionic Wishart matrices, the phase

transition in rank 1 spiked model was studied by Baik, Ben-

Arous and Péché (complex) and Wang (quartonionic).

• Let 1 + τ be the non-trivial eigenvalue and γ = M/N .

Then for −1 < τ < γ−1, the largest eigenvalue distribu-

tion are same as the ones with Σ = I. i.e. Tracy-Widom

distribution for the respective symmetry.

• Phase transition occurs at τ = γ−1. Largest eigenvalue

distribution: Tracy-Widom GOE for both the complex and

quartonionic case.
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• Real case is more complicated. Very recently, Bloemendal

and Virág characterized the distribution at the phase tran-

sition by a boundary value problem. They use stochastic

operator method that is very different from ours.

• Our work uses orthogonal polynomial method to find the

distribution at the phase transition. The result takes the

following form
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F(ζ) is of the form

F(ζ) =
√

GUE





•The functions φ0, σ, φ1 and ψ are all known, φ0 σ and φ1

are expressible in terms of the Hastings-McLeod solution to

Painlevé II, and ψ is

ψ = (T − τ̃ ζ)
1
2 , τ̃ =

τ

2(1 + τ)
,

φ′′0(ζ) = ζφ0(ζ) + 2φ3
0(ζ),

φ0(ζ) ∼ −Ai(ζ), ζ → +∞,

σ(ζ) =

∫ ∞

ζ
φ2

0(u)du



Contour integral formula for j.p.d.f.

• Difficulty in finding the j.p.d.f.

P(λ) =
1

ZM,N
|∆(λ)|

N
∏

j=1

λ
M−N−1

2
j

∫

O(N)
e−

M
2 Tr(Σ−1gSg−1)gTdg,

If Σ has only one non-trivial eigenvalue 1 + τ , then the

integral is given by

∫

Γ
eMt

N
∏

j=1

e−
M
2 λj

(

t− τ

2(1 + τ)
λj

)−1
2

dt

This is similar to a formula by Bergére and Eynard

∫

O(N)
e−Tr

(

XgY g−1
)

gTdg ∝
∫

eTr(S)

∏N
j=1 det(S − yjX)

dS

over i times real symmetric matrices.



• First, a simple computation shows

∫

O(N)
e−Tr

(

XgY g−1
)

gTdg ∝
N
∏

j=1

e−
M
2 λj

∫

SO(N)
e

τM
2(1+τ)

∑N
j=1 λjg

2
jNgTdg

where gjN is the last column of g.

• We can think of SO(N) as the space of orthonormal

frames.



• Can identify the last column of g as a point in



• We can use this to compute the integral

∫

O(N)
e−Tr

(

XgY g−1
)

gTdg ∝
N
∏

j=1

e−



then

∫ ∞

0
e−stI(Σ,Λ, t)dt ∝

N
∏

j=1

e−
M
2 λj

∫

RN
e

∑N
j=1

(

−s+ τM
2(1+τ)

λj

)

x2
j dX

Can be evaluated as

∫ ∞

0
e−stI(Σ,Λ, t)dt ∝

N
∏

j=1

e−
M
2 λj

(

s− τM

2(1 + τ)
λj

)−1
2

• Taking the inverse Laplace transform, we obtain the con-

tour integral formula

I(Σ,Λ) ∝
∫

Γ
eMt

N
∏

j=1

e−
M
2 λj

(

t− τ

2(1 + τ)
λj

)−1
2

dt,

• To derive the formula, we first decompose the Haar mea-

sure into two parts, integrate out the part we do not need

and then use the Laplace transform to ‘flatten’ to measure

on SN−1.



• The idea is similar to Bergére and Eynard, in which the

whole Haar measure is ‘flatten’ by an integral transform to

obtain an integral formula over the space of N × N sym-

metric matrices.

∫

O(N)
e−Tr

(

XgY g−1
)

gTdg ∝
∫

eTr(S)

∏N
j=1 det(S − yjX)

dS



Asymptotic analysis

• The contour integral expression reduces the problem to
the analysis of the orthogonal ensemble with weight w

w(x) = e



U is the moment matrix with entries

1

2

∫ ∞

0

∫ ∞

0
rj(x)sgn(x− y)rk(y)w(x)w(y)dxdy,

rk



• The kernel S1 can be written in terms of Laguerre poly-

nomials.

S1 = K1 +K2,

K2 =

(

y(t− τ̃ y)

x(t− τ̃x)

)1
2

w
1
2
0(x)w

1
2
0(y)

LN(x)LN−1(y) − LN(y)LN−1(x)

hN−1,0(x− y)
,

K1 = ε
(

πN+1,1w πN,1w
)

(y)


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w(

LN : monic Laguerre polynomials orthogonal to the weight

xM−Ne−Mx.



• Asymptotics of S1 can be computed using the asymptotics

of the Laguerre polynomials. The moment matrix is also

related to S1.

∂

∂t
log detU = −

∫

R+

S1(x, x)

t− τ̃x
dx,

• This gives us the following representation for the largest

eigenvalue distribution.

P(λmax < z) ∝
∫

Γ
exp

(

Mt− 1

2

∫ t

c0

∫

R+

S1(x, x)

s− τ̃x
dxds

)

√

det
(

I −Kχ[z,∞)

)

dt.



Phase transition

• In the large N limit, both the Fredholm determinant and

the integral
∫ t

c0

∫

R+

K1(x, x)

s− τ̃x
dxds

remains finite. The t integral in the largest eigenvalue distri-

bution can therefore be computed using saddle point anal-

ysis for

Mt−
∫ t

c0

∫

R+

K2(x, x)

s− τ̃x
dxds

Note that K2(x, x) is the same as the CD kernel for the

Laguerre polynomials.

K2(x, x) = w
1
22



and we have

K2(x, x) ∼ Nρ,
∫ t

c0

∫

R+

K2(x, x)

s− τ̃x
dxds ∼ N

∫

R+

ρ log(t− τ̃x)dx.

• Saddle point analysis gives (e.g. for γ = 1)

1 − 1

4τ̃



1 −
√

t− 4τ̃

t



 = 0.

Then the saddle point is at

1

2 − 4τ̃
, τ̃ =

τ

2(1 + τ)
, −∞ < τ̃ <

1

2

and

t

τ̃
=

1

(2 − 4τ̃)τ̃
.

• The function t/τ̃ decreases from 0 to −∞ for τ̃ < 0 and

is greater than or equal to 4 for τ̃ > 0.



• When τ̃ = 1/4, τ = 1 we have t/τ̃ = 4 and the saddle

point coincide with the edge point of spectrum. This gives

a phase transition.

• When τ̃ → ∞, t/τ̃ → 0, ⇒ different behavior for smallest

eigenvalue.





• When τ = 1, the singularity t/τ̃



K2 →
(

T − τ̃ ξ2
T − τ̃ ξ1

)
1
2 Ai(ξ1)Ai′(ξ2) − Ai′(ξ1)Ai(ξ2)

ξ1 − ξ2

• Contribution of each term to asymptotics:

det (I − χKχ) = det((I −K2χ)−1) det (I −Kc)

first term gives Tracy-Widom GUE independent on T . Sec-

ond term is a determinant of 3 × 3 matrix.

detU = F2
1 (T)

This gives

F(ζ) =
√

GUE(ζ)

∫

Γ
F1(T)

√

det
(

δij − (αi, βj)
)

1≤i,j≤3
dT


