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e Real Wishart spiked models

e Contour integral formula for j.p.d.f.

e Asymptotic analysis and phase transition



114 _
‘e ' sh r, Sp |f\edﬁl ode.s

e Real Wishart matrix S in’WR (=, M):

1. X: NxM (M > N) and columns of X are i.i.d. N-
variate normal variables with zero mean.

2. 2! covariance matrix 2jj = E(Xj1Xj1).

e \Wishart matrix:
1
S =__—_XX'",
M

e Think of each column of X as a sample from a N-variate
normal variables with zero mean. Then S is the sample
covariance matrix.
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e For complex and quartonionic Wishart matrices, the phase
transition in rank 1 spiked model was studied by Baik, Ben-
Arous and Péché (complex) and Wang (quartonionic).

e Let 1 + T be the non-trivial eigenvalue and y = M/N.
Then for —1 < 1 < y—1, the largest eigenvalue distribu-
tion are same as the ones with > = 1. Ii.e. Tracy-Widom
distribution for the respective symmetry.

e Phase transition occurs at T = y~1. Largest eigenvalue
distribution: Tracy-Widom GOE for both the complex and
quartonionic case.
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e Real case is more complicated. Very recently, Bloemendal
and Virag characterized the distribution at the phase tran-
sition by a boundary value problem. They use stochastic
operator method that is very di erent from ours.

e Our work uses orthogonal polynomial method to find the
distribution at the phase transition. The result takes the
following form
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F ({) is of the form

F(Q = GUE






e T he functions @g, 0, @1 and ¢ are all known, @g ¢ and @1
are expressible in terms of the Hastings-McLeod solution to
Painleve Il, and ( is
. P _ T
V=0 -T07 T=S
P5(Q) = 190(Q) + 203(),
Po(C) ~ —AI((), {— +oo,

o) = Zoo 93 (u)du
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e Di culty in finding the j.p.d.f.
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If > has only one non-trivial eigenvalue 1 + 1, then the
integral is given by
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This is similar to a formula by Bergére and Eynard
e IT(S)

o—Tr Xgyg~! g7 dg
O(N) _1 det(S — yJX)

over 1 times real symmetric matrices.



e First, a simple computation shows
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where gjN Is the last column of g.

e We can think of SO(N) as the space of orthonormal
frames.



e Can identify the last column of g as a point in



e \We can use this to compute the integral
N
gng X e
=1
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then
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Can be evaluated as
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e Taking the inverse Laplace transform, we obtain the con-
tour integral formula
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e To derive the formula, we first decompose the Haar mea-
sure into two parts, integrate out the part we do not need
and then use the Laplace transform to ‘flatten’ to measure

on SN—1

dt,




e The idea is similar to Bergére and Eynard, in which the
whole Haar measure is ‘flatten’ by an integral transform to
obtain an integral formula over the space of N x N sym-
metric matrices.
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e The contour integral !ijession reduces the problem to
the analysis of the orthogonal ensemble with weight w

C N .ySs

w(x) = e



U 1s the moment matrix with entries

1 oo oo

20 0 rj )sgn(x — y)ri(y)w(x)w(y)dxdy,



e The kernel S;1 can be written in terms of Laguerre poly-
nomials.

S1 = Kq + Ko,
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Ln: monic Laguerre polynomials orthogonal to the weight
xM—No—Mx



e Asymptotics of S; can be computed using the asymptotics
of the Laguerre polynomials. The moment matrix is also
related to S;.
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e This gives us the following representation for the largest
eigenvalue distribution.
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e In the large N limit, both the Fredholm determinant and
the integral
t K1 (X, X)
co Ry S—TX
remains finite. The tintegral in the largest eigenvalue distri-
bution can therefore be computed using saddle point anal-

ysis for

dxds

t K2 (X, X)

Note that K>(X,X) Is the same as the CD kernel for the
Laguerre polynomials.

Mt — dxds

1
Ko (X, X) = w?



and we have

t K
2% X) juds ~ N plog(t — Tx)dx.
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Ko (X, X) ~ Np,

e Saddle point analysis gives (e.g. fory = 1)

1 t— 47
41 t

Then the saddle point is at

and

e [ he function t/T decreases from O to —occ for T < 0 and
IS greater than or equal to 4 for T > 0.



e When T = 1/4, 1t = 1 we have t/T = 4 and the saddle
point coincide with the edge point of spectrum. This gives
a phase transition.

e When T — oo, t/T — 0, = di erent behavior for smallest
eigenvalue.






e \When 1 = 1, the singularity t/T
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e Contribution of each term to asymptotics:

Ko

det (1 — xKX) = det((1 — Kox) 1) det (1 — K¢)

first term gives Tracy-Widom GUE independent on T. Sec-
ond term is a determinant of 3 x 3 matrix.

detyd = F{(T)
This gives

F(O) = GUE(Q) I_Fl(T) det ojj — (ai, Bj) 1<|J<3



