May-Wigner Instability Scenario :

"Will a Large Complex System be Stable?"

This question was posed by **Robert May** (*NATURE* **238**, 413 (1972)) who introduced a toy **linear** model for (in)stability of a large system of many interacting species:

$$\mathbf{x} = \mathbf{x} + B\mathbf{x}$$
; > 0 ; $\mathbf{x} \ge \mathbb{R}^N$

Without interactions the part $\underline{\mathbf{x}} = \mathbf{x}$ describes a simple exponential relaxation of *N* uncoupled degrees of freedom x_i with the same rate > 0 towards the stable equilibrium $\mathbf{x} = 0$. A complicated interaction between dynamics of different degrees of freedom is mimicked by a general real asymmetric *N N* random matrix *B* with mean zero and prescribed variance P_i^2 of all entries. As a typical eigenvalue of *B* with the largest real part grows as N the equilibrium $\mathbf{x} = 0$ becomes unstable as long as < N.

This scenario is known in the literature as the "May-Wigner instability" and despite its oversimplifying and schematic nature attracted very considerable attention in mathematical ecology and complex systems theory over the years.

Counting equilibria via Kac-Rice formulae:

A standard analysis of autonomous ODE's starts with finding **equilibrium points** and classifying them by **stability** properties.

We would like to know the **total number** $N_{tot}(D)$ of all possible **equilibria** of our system of nonlinear ODEs, i.e. the number of simultaneous solutions of N equations $x_i + f_i(x_1, \dots, x_N)$

Mean number of equilibria and the Elliptic Ensemble:

Using Kac-Rice approach we are able to count the **mean** total number $E f N_{tot}g$ of all possible **equilibria** in the system of nonlinear ODEs under consideration. This turns out to be given by (**YVF** & **Khoruzhenko**, *in progress*):

$$EfN_{tot}g = \frac{1}{m^{N}N^{(N-1)=2}} \begin{bmatrix} R_{1} & D \\ T_{1} & det (m+t^{D}) \end{bmatrix} \begin{bmatrix} D \\ \overline{N} & \mathbf{X} \end{bmatrix} \begin{bmatrix} E \\ \frac{e}{p} \frac{Nt^{2}}{2} dt \\ \frac{E}{2} \end{bmatrix}$$

where m = c with some characteristic scale c, and the random real asymmetric matrix X being taken from the Gaussian Elliptic Ensemble:

$$P(\mathbf{X}) = C_N()e^{\frac{1}{2(1-2)}[\text{Tr}\mathbf{X}\mathbf{X}^T - \text{Tr}\mathbf{X}^2]}; \qquad 2[0;1]$$

The parameter depends on the ratio of variances of **gradient** and **solenoidal** components of the field such that the **real Ginibre ensemble** with = 0 corresponds to **purely solenoidal**, and GOE with = 1 to **purely gradient** flow.

Let us denote $_{N}^{(r)}()$ the mean density of **real** eigenvalues of N N matrices **X** for the elliptic ensemble at \cdot . Then it turns out that (cf. **Edelman**, **Kostlan**, **Schub** '94.)

*hj*det (**X**)*j*/_{*X*} =
$$2^{D} \frac{(N-1)!}{(N-2)!!} (r)_{N+1} (r)$$

The mean density $_{N}^{(r)}()$ of real eigenvalues for the elliptic ensemble was computed explicitly by **Forrester & Nagao** '08 in terms of Hermite polynomials, and its large-N asymptotic behaviour was studied as well.

Asymptotic analysis of the counting problem for N 1 reveals then a **topology detrivialization** transition, with the total number of equilibria **abruptly** changing from **a single equilibrium** for $> c = N(F^{(0)}(0) + O(0))$ to **exponentially many** equilibria as long as < c: $E f N_{tot} g = \frac{Q}{\frac{2(1+)}{1}} e^{N - tot(m)}; \quad tot(m) = \frac{m^2}{2} - \ln m > 0$ for $m = -\frac{1}{c} < 1$

Landscape topology (de)trivialization for gradient dynamics:

In the case of purely gradient dynamics $\underline{\mathbf{x}} = \mathbf{x}$ $\Gamma V(\mathbf{x}) = \Gamma L(\mathbf{x})$ where : $L(\mathbf{x}) = \frac{P_{i=1}^{N-1} x_i^2 + V(x_1, \dots, x_{N-1})}{i=1}; > 0; \quad 1 < x_i < 1$

is the Lyapunov function (or "energy functional"). Correspondingly the equilibria points are simply stationary points of the Lyapunov function whereas the stable equilibria are local minima.

 $_{2COO}(a \text{ nnm}) - 505 \text{ Tf a}$ Taking as before $V(\mathbf{x})$ to be stationary isotropic random Gaussian field with covariance structure $EfV(\mathbf{x})V(\mathbf{y})g = F(\mathbf{x})$

Landscape topology (de)trivialization for gradient dynamics:

The asymptotics $F_{N-1}(t)$ is well known (Tracy & Widom '94; Borot et al '11). Using it for a fixed $m \neq 1$ we find for the mean number of minima:

$$E fN_{min}g \qquad \begin{array}{cc} 1; & m > 1\\ e^{N_{st}(m)}; & m < 1 \end{array}$$

Here the complexity of stable equilibria (minima) is given by

$$(m) = \frac{1}{2}(m^2)$$

Part II: Topology of Random Algebraic Varieties :

Recently, the problem of computing the expectation of topological properties of random algebraic varieties has attracted a lot of interest (see e.g. the works by **Burgisser '07, Nazarov-Sodin '09, Gayet-Welshinger '11, Sarnak '11, Lerario-Lundberg '12, Sarnak-Wigman '13)** and others. An important class of problems addresses estimates for Betti numbers of "generic" (=random) real hypersurfaces given by **zero set** of real random homogenious polynomials of degree *d* in n + 1 variables restricted to the unit sphere. E.g. for d = 60 and n = 2 a typical picture is:

Figure 1: Zero locus of a random polynomial of degree d = 60 on the sphere (M. Nastasescu)

Upper bound on *b*₀ by Random Matrix Theory:

It turns out that the methods and results just exposed allow one to provide a useful **upper bound** to the **expected number of connected components** $b_0(f)$. Indeed, every component of the zero locus of the polynomials restricted to the sphere bounds a region where the function attains at least a maximum or a minimum, and consequently $E fb_0(f)g = E fN_{min} + N_{max}g$, where $N_{min=max}$ are numbers of minima/maxima on the sphere. The problem then amounts to counting minima of a random function on a sphere.

Figure 2: Zero locus of a random polynomial of degree d = 60 on the sphere (M. Nastasescu)

Counting Stationary points for Isotropic Gaussian Landscapes:

In recent years there was a steady progress in counting & classifying the **mean number** of **stationary points** of smooth isotropic Gaussian random fields $V(\mathbf{x})$ on the sphere $j\mathbf{x}j = R$ such that

$$\mathsf{E} f V(\mathbf{x}) V(\mathbf{x}^{\theta}) g = F(\mathbf{x} \ \mathbf{x}^{\theta})$$

Using the multidimensional Kac-Rice integrals it was shown, in particular, that $E f N_{min}g$ can be again directly related to the the distribution $F_N(t)$ of the maximal eigenvalue of random GOE matrices H such that $P(H) \neq \exp \left(\frac{N}{4} \operatorname{Tr} H^2\right)$. Namely

$$E f N_{min}g = 2 \frac{1+B}{1-B} = \frac{N=2}{1-B} \frac{P_{1}}{1-B} \frac{R_{1}}{1-B} e^{-NBt^{2}}$$

Upper bound on *b*₀ for Gaussian rotationally invariant polynomials:

Endowing polynomials with a rotationally-invariant Gaussian distribution we can find $E f N_{min}g$ for any *n* and *d* from our formalism. We will mostly be interested in the limits $d \neq 1$ for a fixed *n* or $n \neq 1$ for a fixed *d*.

Let $fY_{l}^{j}g$ denote the standard basis of spherical harmonics of degree l on sphere S^{n} , then a random invariant Gaussian polynomial of degree d in n + 1 variables can be constructed as : $f(\mathbf{x}) = \Pr_{d \mid l \geq 2\mathbb{N}} p_{d}(l) \Pr_{j} \frac{j}{l} j \mathbf{x} j^{d \mid l} Y_{l}^{j} \frac{\mathbf{x}}{j \mathbf{x} j} ; p_{d}(l) = 0 \text{ Kostlan}$ where $\frac{j}{l}$ are i.i.d. Gaussian coefficients, and nonnegative weights $p_{d}(d); p_{d}(d \mid 2); \ldots;$

where f_{l} are i.i.d. Gaussian coefficients, and nonnegative weights $p_{d}(d)$; $p_{d}(d = 2)$; : : : parametrize all invariant ensembles.

We assume that there exists such 0 < 1 that as $d \neq 7$ the polynomials assume the scaling form: $p_d(d x)d \neq (x) \neq (x) \neq (x)$

For the special case of **purely gradient** flows one can also find explicit expression for the number of **stable** equilibria. The latter are exponential in N but their fraction among all equilibria is negligible. The crossover expression in that case is given in terms of the