May-Wigner Instabilty Scenario :

"**Will a Large Complex System be Stable?"**

This question was posed by **Robert May** (*NATURE* **238**, 413 (1972)) who introduced a toy **linear** model for (in)stability of a large system of many interacting species:

$$
\mathbf{x} = \mathbf{x} + B\mathbf{x}; \quad > 0; \mathbf{x} \ 2 \ R^N
$$

Without interactions the part $x = x$ describes a **simple exponential** relaxation of N uncoupled degrees of freedom x_i with the same rate ≥ 0 towards the **stable equilibrium** $x = 0$. A complicated interaction between dynamics of different degrees of freedom is mimicked by a general **real asymmetric** N N random matrix B with mean zero and prescribed variance $\frac{2}{12}$ of all entries. As a typical eigenvalue of B with the largest real part grows as $\vec{\rho}$ N the equilibrium x = 0 becomes **unstable** p as long as \prec γ .

This scenario is known in the literature as the "**May-Wigner** instability" and despite its oversimplifying and schematic nature attracted very considerable attention in mathematical ecology and complex systems theory over the years.

Counting equilibria via Kac-Rice formulae:

A standard analysis of autonomous ODE's starts with finding **equilibrium points** and classifying them by **stability** properties.

We would like to know the **total number** $N_{tot}(D)$ of all possible **equilibria** of our system of nonlinear ODEs, i.e. the number of simultaneous solutions of N equations $x_i + f_i(x_1; \ldots; x_N)$

Mean number of equilibria and the Elliptic Ensemble:

Using Kac-Rice approach we are able to count the **mean** total number $E f N_{tot} g$ of all possible **equilibria** in the system of nonlinear ODEs under consideration. This turns out to be given by (**YVF** & **Khoruzhenko**, *in progress*):

$$
E f N_{tot} g = \frac{1}{m^N N^{(N-1)/2}} R_{1} D_{\text{det}} (m + t^D)^D \overline{N} \times \frac{E_{e} \frac{N t^2}{\rho^2} dt}{x}
$$

where $m = c$ with some characteristic scale c_i and the random **real asymmetric** matrix X being taken from the **Gaussian Elliptic Ensemble**:

$$
P(\mathbf{X}) = C_{N}(\)e^{-\frac{1}{2(1-2)}}[\text{Tr} \mathbf{X} \mathbf{X}^{T} \quad \text{Tr} \mathbf{X}^{2}], \qquad 2 [0;1]
$$

The parameter depends on the ratio of variances of **gradient** and **solenoidal** components of the field such that the **real Ginibre ensemble** with $= 0$ corresponds to **purely solenoidal**, and GOE with $= 1$ to **purely gradient** flow.

Let us denote $\binom{r}{N}$ () the mean density of real eigenvalues of N N M matrices X for the elliptic ensemble at . Then it turns out that (cf. **Edelman, Kostlan, Schub** '94.)

*h*jet (
$$
X
$$
) $ji_X = 2^D \frac{(N-1)!}{(N-2)!}$ (r) $n+1$ (r) e^{-2}

The mean density $\chi^{(r)}(t)$ of real eigenvalues for the elliptic ensemble was computed explicitly by **Forrester** & **Nagao** '08 in terms of Hermite polynomials, and its large-N asymptotic behaviour was studied as well.

Asymptotic analysis of the counting problem for N 1 reveals then a **topology detrivialization** transition, with the total number of equilibria **abruptly** changing from **a** single equilibrium for \qquad $\$ equilibria as long as $\epsilon < c$: $EfN_{tot}g = \frac{2(1+)}{1}$ $\frac{(1+1)}{1}e^{N}$ tot(*m*); $\qquad \qquad tot(m) = \frac{m^2}{2}$ $\frac{1}{2}$ ln *m* > 0 for *m* = $\frac{1}{c}$ < 1

Landscape topology (de)trivialization for gradient dynamics:

In the case of purely gradient dynamics $x = x$ $\Gamma V(x) = \Gamma L(x)$ where : $L(\mathbf{x}) = \frac{1}{2} \int_{i=1}^{N} \int_{i=1}^{1} x_i^2 + V(x_1; \dots; x_{N-1});$ $> 0;$ $1 < x_i < 1$

is the Lyapunov function (or "energy functional"). Correspondingly the equilibria points are simply **stationary** points of the Lyapunov function whereas the stable equilibria are local **minima**.

c ooccannm) - 505 Taking as before *V*(x) to be stationary isotropic random Gaussian field with covariance structure $E fV(\mathbf{x})V(\mathbf{y})g = F(\mathbf{x})$

Landscape topology (de)trivialization for gradient dynamics:

The asymptotics $F_{N-1}(t)$ is well known (**Tracy** & **Widom** '94; **Borot et al** '11). Using it for a fixed $m \notin 1$ we find for the mean number of minima:

$$
\begin{array}{ll}\nE f N_{min} g & 1; & m > 1 \\
e^{N_{st}(m)}, & m < 1\n\end{array}
$$

Here the complexity of stable equilibria (minima) is given by

$$
(m) = \frac{1}{2}(m^2)
$$

Part II: Topology of Random Algebraic Varieties :

Recently, the problem of computing the expectation of topological properties of random algebraic varieties has attracted a lot of interest (see e.g. the works by **Burgisser '07, Nazarov-Sodin '09, Gayet-Welshinger '11, Sarnak '11, Lerario-Lundberg '12, Sarnak-Wigman '13**) and others. An important class of problems addresses estimates for Betti numbers of "generic" (=random) real hypersurfaces given by **zero set** of real random homogenious polynomials of degree d in $n + 1$ variables restricted to the unit sphere. E.g. for $d = 60$ and $n = 2$ a typical picture is:

Figure 1: Zero locus of a random polynomial of degree $d = 60$ on the sphere (M. Nastasescu)

Upper bound on b_0 by Random Matrix Theory:

It turns out that the methods and results just exposed allow one to provide a useful **upper bound** to the expected number of connected components $b_0(f)$. Indeed, every component of the zero locus of the polynomials restricted to the sphere bounds a region where the function attains at least a maximum or a minimum, and consequently $E f b_0(f)g \t E f N_{min} + N_{max}g$, where $N_{min=max}$ are numbers of minima/maxima on the sphere. The problem then amounts to counting minima of a random function on a sphere.

Figure 2: Zero locus of a random polynomial of degree $d = 60$ on the sphere (M. Nastasescu)

Counting Stationary points for Isotropic Gaussian Landscapes:

In recent years there was a steady progress in counting & classifying the **mean number** of **stationary points** of smooth isotropic Gaussian random fields V (x) on the sphere \dot{x} = R such that

$$
E fV(\mathbf{x}) V(\mathbf{x}^0)g = F(\mathbf{x} \ \mathbf{x}^0)
$$

Using the multidimensional **Kac-Rice** integrals it was shown, in particular, that E fN_{min} g can be again directly related to the the distribution $F_N(t)$ of the maximal eigenvalue of $\sf{random GOE}$ matrices H such that $P(H)\nearrow \text{exp}-\frac{N}{4}\text{Tr}H^2$. Namely

$$
E f N_{min} g = 2 \frac{1+B}{1-B} \frac{N=2}{1} \frac{D}{B} \frac{R}{1} \frac{1}{1} e^{N B t^2}
$$

Upper bound on b_0 for Gaussian rotationally invariant polynomials:

Endowing polynomials with a rotationally-invariant Gaussian distribution we can find $E f N_{min}$ g for any n and d from our formalism. We will mostly be interested in the limits $d \mid 1$ for a fixed n or $n \mid 1$ for a fixed d.

Let fY_j^j \mathcal{S}^{f}_{I} g denote the standard basis of spherical harmonics of degree I on sphere \mathcal{S}^{n} , then a random invariant Gaussian polynomial of degree d in $n + 1$ variables can be constructed as : $f(\mathbf{x}) = \int_{d}^{d} \log p_d(t) \cdot \int_{d}^{d}$ j \int_{I}^{j} j x j^d \int l x $\frac{\mathsf{x}}{\mathsf{y} \mathsf{x} \mathsf{j}}$; $p_d(\mathsf{l})$ 0 Kostlan **Endowing** polynomials with a rotationally invariant polynomials:
 Endowing polynomials with a rotationally-invariant Gaussian distribution we can find $E f N_{min} g$ for any *n* and *d* from our formalism. We will mostly be

where $\frac{j}{\ell}$ are i.i.d. Gaussian coefficients, and nonnegative weights $\rho_d(d)$; $\rho_d(d-2)$; : : : ; **parametrize** *all* **invariant ensembles.**

We assume that there exists such $0 < 1$ that as $d / 1$ the polynomials assume the $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ scaling form: $p_d(d \times d \mid (x) \notin (x))$

For the special case of **purely gradient** flows one can also find explicit expression for the number of **stable** equilibria. The latter are exponential in N but their fraction among all equilibria is negligible. The crossover expression in that case is given in terms of the