
Random Fermionic Systems

Fabio Cunden Anna Maltsev Francesco Mezzadri

University of Bristol

December 9, 2016

Maltsev (University of Bristol) Random Fermionic Systems



Background

First introduced to study magnetic properties of matter

Toy model for quantum information { study of entanglement

Random matrix aspect



Background

First introduced to study magnetic properties of matter

Toy model for quantum information { study of entanglement

Random matrix aspect

Three papers that inspired this work:
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Our object of study: the Hamiltonian

Self-adjoint operator acting on C2n

H =
1

2

nX
i ;j=1

Aij (ci
ycj � cicj

y) + Bij (cicj � ci
ycj
y)

with Aij = Aji ; Bij = �Bij ; i.e. A = At and B = �Bt .

cj ’s are fermionic i.e. fci ; cjg = 0; fci ; cj
yg = �ij ;

We take Aij ;Bij iid real. Our conclusions:

Ground state energy gap O(1=n) with explicit formula if Gaussian
entries

DOS { Gaussian universally, also for A, B band

No repulsion { numerics
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Our current work: overview

Universality

Gaussian DOS vastly universal

Subset sums: given a set f�1; :::; �ng and Sj � f1; :::; ng, eigenvalues
of H are closely related to

P
k2Sj

�k .

A lot of information

Gaussian DOS
Groundstate energy gap

Relation to sums of weighted binomial random variables
{ can take Fourier transform explicitly!
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Background

Fermionic systems: how they arise?

n sites with spins that are linear combinations of �x and �y (no �z)

nearest neighbor interaction { the XY model

the corresponding Hamiltonian is

nX
k=1

X
a2fx ;yg

X
b2fx ;yg

�k;a;b�
a
k�

b
k+1

Here �
(a)
j = I


(j�1)
2 
 �(a) 
 I


(n�j)
2

via Jordan-Wigner transformation, the Hamiltonian is equivalent to a
quadratic form in fermionic variables
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Background



Background

Jordan-Wigner transformation

Maps a spin chain to a quadratic form in fermionic operators: allows
for an exact solution

In reverse: model a system of interacting fermions on a quantum
computer
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Background

Jordan-Wigner details

Raising and lowering operators ayi = �x
i + i�y

i and ai = �x
i � i�y

i

Can recover Pauli spin operators by �x
j = (ayj + aj )=2,

�y
j = (ayj � aj )=2, �z

j = (ayj aj � 1=2)

Not fermionic

Partly fermionic: faj ; a
y
j g = 1; a2

j = (ayj )2 = 0

Partly bosonic: [ayj ; a
y
k ] = [ayj ; a

y
k ] = [aj ; ak ] = 0

For fermionic let

cj = exp

 
�i

j�1X
k=1

aykak

!
aj

cyj = ayj exp

 
��i

j�1X
k=1

aykak

!
:

cj ’s and cyj ’s are fermionic: fcj ; c
y
kg = �kj ; fcj ; ckg = fcyj ; c

y
kg = 0
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Lieb-Schultz-Mattis Antiferromagnetic Chain ’61

Lieb-Schultz-Mattis Antiferromagnetic Chain ’61

H
 =
P

j (1 + 
)�x
j �

x
j+1 + (1� 
)�y

j �
y
j+1

Hamiltonian is a quadratic form in Fermi operators and can be
explicitly diagonialized

For free ends:

H
 =
1

2

n�1X
j=1

cyj cj+1 + 
cyj cyj+1 + hc

study long-range order in ground state
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Lieb-Schultz-Mattis Antiferromagnetic Chain ’61

Lieb-Schultz-Mattis

If H = (cy c) �M �
�

c
cy

�
; with M = 1

2

�
A �B
B �A

�
for XY model as before

A =

0BBBBBB@
0 1 0 � � � 0 0 1
1 0 1 � � � 0 0 0
0 1 0 � � � 0 0 0
: : : : : : : : : : : : : : : : :
0 0 0 � � � 1 0 1
1 0 0 � � � 0 1 0

1CCCCCCA and B =

0BBBBBB@
0 1 0 � � � 0 0 �1
�1 0 1 � � � 0 0 0
0 �1 0 � � � 0 0 0
: : : : : : : : : : : : : : : : : : : : : : :
0 0 0 � � � �1 0 1
1 0 0 � � � 0 �1 0

1CCCCCCA
and A, B can be explicitly diagonalized.

In the ’61 paper,

Complete set of eigenstates

General expression for the order between any two spins involving a
Green’s function

Short, intermediate, and long range order for various situations
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Study of Entanglement in Quantum Information Theory

Bipartite Entanglement

Setup: XY and XX models with a constant transversal magnetic �eld
Study: Entropy Ep of entanglement between subsystems

Vidal et al. computed Ep numerically

Jin and Korepin compute Ep for XX model using the Fisher-Hartwig
conjecture, which gives the leading order asymptotics of determinants
of certain Toeplitz matrices

Keating and Mezzadri study asymptotics of entanglement of
formation of ground state using RMT methods
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Study of Entanglement in Quantum Information Theory

Wells PhD thesis

Hamiltonians of the form

Hn =
1p
n

nX
j=1

3X
a=1

3X
b=1

�a;b;j�
(a)
j �

(b)
j+1 (1)

for any �a;b;j 2 R random Gaussian (some universality possible)

Remarks:

RMT introduced directly into the Hamiltonian, as the Hamiltonian is
itself a random matrix

Includes the �z so Jordan-Wigner does not yield a quadratic form

Obtains a Gaussian density of states
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Study of Entanglement in Quantum Information Theory

Wells Numerics in the XY case

For a Hamiltonian of the form

Hn =
1p
n

nX
j=1

2X
a=1

2X
b=1

�a;b;j�
(a)
j �

(b)
j+1 (2)

Eigenvalue repulsion in the full model and lack of repulsion in the
random XY model

Convergence to a Gaussian in the random XY model

Numerical estimate of the error in the random XY model is on the
order of 1=n where n is the number of cubits

Maltsev (University of Bristol)



Study of Entanglement in Quantum Information Theory

Extension by Erd�os and Schr�oder

Arbitrary graphs with maximal degree � total number of edges

Gaussian DoS

p-uniform hypergraphs

Correspond to p-spin glass Hamiltonians acting on n distinguishable
spin-1/2 particles
At p = n1=2, phase transition between the normal and the semicircle
quantum-classical transition
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Study of Entanglement in Quantum Information Theory

Summary

Known:

DoS, spectral gap in (deterministic) XY model

DoS in a random neighbor-to-neighbor Hamiltonian with XYZ

Numerics:

DoS in a random XY model

Rate of convergence in the random XY model

Lack of repulsion

We establish:

DoS in general bilinear forms of fermionic operators

spectral gap in special cases
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Methods and Results

Diagonalizing M

Eigenvalue equation: 1
2

�
A �B
B �A

��
�1

�2

�
= �

�
�1

�2

�
:

Equivalent to:

(
A�1 � B�2 = 2��1;

B�1 � A�2 = 2��2:

If  1 = �1 � �2 and  2 = �1 + �2, then

(
(A + B) 1 = 2� 2;

(A� B) 2 = 2� 1:

Note that (A� B)T = (A + B) and hence we get

1

4
(A + B)T (A + B) 1 = �2 1:

� 2 �(M) ()
p
�2 is singular value of

A + B

2
:
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Methods and Results

Need Hermiticity to get new Fermi operators

Let U be the orthogonal matrix that diagonalizes M.

Then U is a linear canonical transformation in the sense that

U =

�
G K

GT KT

� (
GGT + KKT = In

GKT + KGT = 0n;
(3)

and

UMUT =
1

2

�
� 0
0 ��

�
;

with � = diag(�1; : : : ; �n), �i � 0.

Let �k ; �k
y operators de�ned by�

�

�y

�
= U

�
c
cy

�
:

Because of (3), the �’s are Fermi operators as well.

H =
Pn

k=1 �k�k
y�k + cI2n where �k � 0 and c = �1

2

Pn
k=1 �k .
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Methods and Results

Diagonalizing H: Fermi basis

�j acts as a lowering operator for �yj �j i.e. if �yj �j j i = j i then

�yj �j�j j i = 0

�yj acts as a raising operator for �yj �j

�yj �j ’s commute so there exists a state j i which is a simultaneous
eigenstate

By raising and lowering the state j i in all possible combinations, can
construct a set of 2n orthonormal states which are simultaneous
eigenstates of the �yj �j
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Fermi basis

Diagonalizing H : subset sums

The spectrum of H is characterized as follows:

x 2 �(H) () 9S � f1; : : : ; ng such that x = c +
X
k2S

�k : (4)

where c = �1
2

Pn
k=1 �k

Key point in our methodology:

We work with the subset sum structure to glean information for a �xed
sequence of �j ’s. Then we introduce the randomness on �j ’s as in RMT.
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Ground state energy gap: important physical quantity,
re
ects how sensitive is the system to perturbations

Theorem 1

For A, B



Our methods and results

Ground state energy gap: important physical quantity,
re
ects how sensitive is the system to perturbations

Theorem 1

For A, B with iid Gaussian entries up to symmetry, the rescaled energy
gap

p
2n=�� converges in distribution to a random variable whose

probability density function is

f (x) = (1 + x)e�
x2

2
�x :

x2n =
Pn

j=1 �j and x2n�1 =
Pn

j=2 �j yielding that

� := x2n � x2n�1 = �1

Recall that �j are singular values of A + B

Result for smallest eigenvalue value of Wishhart matrices by Edelman

Note that � is very large compared to mean spacing (O(1/n) instead
of 2�n)
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Our methods and results

The relation with iid Bernoullis

Let xj be the eigenvalues of H. Then

xj =
1

2

X
k2Sj

�k �
1

2

X
k2Sc

j

�k

for some Sj � f1; : : : ; ng.
Then

d�n =
1

2n

2nX
j=1

�xj = prob. meas. of
nX

j=1

�j (Bj � 1=2)

where Bj are n independent Bernoulli random variables.

Fix the triangular array of �j ;n with �j � 4
p

n for all j

Consequences

CLT: Lindenberg condition, so 1p
n
d�n ! N (0; 1

n

P
�2

j )

Can get a precise formula for the Fourier transform of 1p
n
d�n.
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Our methods and results
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Our methods and results

Details

1 Lindenberg condition states:

variances �k are �nite
s2
n =

Pn
k=1 �

2
k

limn!1
1
s2

n

Pn
k=1 E

�
(Xk)2 � 1fjXk j>"sng

�
= 0

yields convergence to a Normal distribution with variance sn for
sequences of �j so that the maximum < 4

p
n

will show that the condition on the max is satis�ed with P! 1 as
n!1
a Berry-Esseen estimate yields an error of 1=

p
n

2 For the computation of the Fourier transform :

1 Fourier transform of 1p
n
�j (Bj � 1=2) is cos

�
t�j

2
p

n

�
2 Fourier transform of the DoS is then

Q
j cos

�
t�j

2
p

n

�
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Our methods and results

Random Matrix Theory

Have to show that �n �
p

n when �2 of matrix entries is 1=N



Numerics, speculations, and future studies

Our Numerics

Figure: Spacing distribution for the unfolded spectrum.
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Numerics, speculations, and future studies

Our Numerics

Figure: Density of states and ground state energy gap distribution for Gaussian
quadratic form of Fermi operator. Here n = 16 (for a sample size of about 50).
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Numerics, speculations, and future studies

Future study

Further questions we want to examine:

Rate of convergence can probably be improved.

The bottom eigenvalue of a band covariance matrix.

In the bulk, the eigenvalues appear to form a Poisson process on the
line.

Speculation: relation to the Berry-Tabor conjecture. Generic
integrable system ) Poisson statistics
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Numerics, speculations, and future studies

Thank you!
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