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Background:

The simplest optimization problem of the least-square type on the sphere
x 2 RN ; x2 = const arises in the Multiple Factor Data Analysis and is known as

the Oblique Procrustes Problem :

For a given pair of M � N matrices A and B �nd such N � N matrix X that the
equality B = AX holds as close as possible and columns x i 2 RN ; i = 1 ; : : : N
are of unit length.

For M > N this system of linear equations is overcomplete and a solution can be
found separately for each column x by minimizing the loss/cost function

H (x ) = 1
2 jjAx � bjj2 := 1

2

P M
k=1

hP N
j =1 Akj x j � bk

i 2
; x2 = const

The problem was �rst analysed in that setting by M. W. BROWNE in 1967, and then
independently by numerical mathematicians (e.g. W. GANDER 1981) who used
the Lagrange multiplier to take care of the spherical constraint. Introducing the
Lagrangian L �; s(x ) = H (x ) � �

2 (x; x ), with real � being the Lagrange multiplier, the
stationary conditions rL �; s(x ) = 0 yields linear system:

AT [Ax � b] = � x ; ) x = ( AT A � �I N ) � 1AT b



Setting of the problem:

The spherical constraint x2 = N yields the equation for � in the form:

bT A 1

(A T A � �I N )2 AT b = N

which is equivalent to a polynomial equation of degree 2N in � . Each real solution
for the Lagrange multiplier � i corresponds to a stationary point x i of the loss
function H (x ) = 1

2 jjAx � bjj2 on the sphere x2 = N and one can show that the
order � 1 < � 2 < : : : < � N implies H (x1) < H (x j ) < : : : < H (xN ). Thus the
minimal loss is given by Emin = H (x1).

Our goal: To count the stationary points via the Lagrange multipliers

� i ; i = 1 ; : : : ; N � 2N
and eventually �nd the minimal loss Emin after assuming the entries Akj of M �
N; M > N matrix A to be i.i.d. normal real variables such that AT A = W is N � N
Wishart with the probability density

PN;M (W ) = CN;M e� N
2 TrW (det W )

M � N � 1
2

We will also assume for convenience that the vector b is normally distributed: b = � �
with � > 0 and the components of � = ( � 1; : : : ; � M )T are mean zero standard normals.



Qualitative considerations:

The equation for the Lagrange multiplier can be conveniently written in terms of N
nonzero eigenvalues s1; : : : ; sN of M � M matrix W (a) = AA T and the associated
eigenvectors v i :

NP

i =1

si
( � � si )2(� T v i )2 = N

� 2

Case N = 5



Counting Lagrange multipliers via the Kac-Rice formula:

The number Nst [a; b] of real solutions of the equation AT [Ax � b] � � x = 0 on the
sphere x2 = N such that � 2 [a; b] can be counted by employing the Kac-Rice type
formula

Nst [a; b] =
Rb
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Using Gaussianity of both the matrix entries A ij � N (0 ; 1) and the vector components

b � N M (0 ; I M � 2) and introducing the parameter � = 1
2 ln (1 + � 2) one can eventually �nd the

mean number of solutions as

E fN st [a; b]g =
Rb

a



Counting Lagrange multipliers via the Kac-Rice formula :

For negative values of the Lagrange multiplier � we have instead:

p(� < 0) = N !N (M � N )=2

2(M + N � 3)=2
1

� ( N
2 ) � ( M

2 )
e� (M + N � 1) �= 2

p
sinh �

e� 1
2N j



"Bulk" Scaling Regime: extensive number of stationary points:

As N & M ! 1 in such a way that 1 < � = M=N < 1 the number of stationary
points in the loss function landscapes shows three different regimes depending on
the magnitude of the parameter � = 1

2 ln (1 + � 2).
"Bulk" Scaling Regime: for small enough � � 1=N so that



Evolution of the density pB (� ) in the 'bulk scaling' regime.



"Edge" Scaling Regime: �nite number of stationary points:

The density of Lagrange multipliers for � � N � 1=3 is dominated by the vicinities of
the spectral edges

j� � s� j � N � 2=3

�
4s2

�
s+ � s�

� 1=3

�

where the



Counting stationary points in the edge regime.



Large Deviations for the smallest Lagrange multiplier:

For large N ! 1 , �xed 1 < � = M=N < 1 and �xed �nite � 2 > 0 the probability
density for the smallest Lagrange multiplier � min has the Large Deviation form:

p(� min < s � ) � e� N
2 � ( � min ) ; � (� ) = L 1(� ) + L 2(� ) + ( � +1)

2 ln (1 + � 2),

where s� = ( p
� � 1)2 is the 'Marchenko-Pastur' left edge and for � = ( � � 1) � 2
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One �nds that �( � ) is minimized for

� = � � = ( p
� �

p
1 + � 2)

�
p

� � 1p
1+ � 2

�

which eventually implies the most probable value of the minimal loss/error :

limN !1
Emin

N = 1
2

hp
� (1 + � 2) � 1

i 2
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The large deviation function for the smallest Lagrange multiplier vs. simulations





Conclusions:

� We counted the mean number of stationary points of the simplest 'least-square '
optimization problem on a sphere via the Lagrange multipliers in various scaling
regimes, and found the typical minimal loss Emin .

� Open questions:

– Fluctuations of the counting function,
– large/small deviations of the minimal loss Emin

– Gradient search dynamics on the sphere
– Landscape for a nonlinear 'least-square' optimization, etc.
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